{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hLUuW5pTJuPT", "outputId": "42b83dd7-f75c-48da-cdc9-bd76ebd7512c" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: roboflow in /usr/local/lib/python3.10/dist-packages (1.1.29)\n", "Requirement already satisfied: certifi==2023.7.22 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2023.7.22)\n", "Requirement already satisfied: chardet==4.0.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.0.0)\n", "Requirement already satisfied: cycler==0.10.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.10.0)\n", "Requirement already satisfied: idna==2.10 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.10)\n", "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.4.5)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from roboflow) (3.7.1)\n", "Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.25.2)\n", "Requirement already satisfied: opencv-python-headless==4.8.0.74 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.8.0.74)\n", "Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from roboflow) (9.4.0)\n", "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.8.2)\n", "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.1)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.31.0)\n", "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.16.0)\n", "Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.0.7)\n", "Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.66.4)\n", "Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (6.0.1)\n", "Requirement already satisfied: requests-toolbelt in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.0)\n", "Requirement already satisfied: python-magic in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.4.27)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (1.2.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (4.51.0)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (24.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (3.1.2)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->roboflow) (3.3.2)\n", "Collecting wandb==0.15.12\n", " Using cached wandb-0.15.12-py3-none-any.whl (2.1 MB)\n", "Requirement already satisfied: Click!=8.0.0,>=7.1 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (8.1.7)\n", "Collecting GitPython!=3.1.29,>=1.0.0 (from wandb==0.15.12)\n", " Using cached GitPython-3.1.43-py3-none-any.whl (207 kB)\n", "Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (2.31.0)\n", "Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (5.9.5)\n", "Collecting sentry-sdk>=1.0.0 (from wandb==0.15.12)\n", " Downloading sentry_sdk-2.2.1-py2.py3-none-any.whl (281 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m281.6/281.6 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting docker-pycreds>=0.4.0 (from wandb==0.15.12)\n", " Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n", "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (6.0.1)\n", "Collecting pathtools (from wandb==0.15.12)\n", " Downloading pathtools-0.1.2.tar.gz (11 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Collecting setproctitle (from wandb==0.15.12)\n", " Downloading setproctitle-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n", "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (67.7.2)\n", "Requirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (1.4.4)\n", "Requirement already satisfied: protobuf!=4.21.0,<5,>=3.19.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (3.20.3)\n", "Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from docker-pycreds>=0.4.0->wandb==0.15.12) (1.16.0)\n", "Collecting gitdb<5,>=4.0.1 (from GitPython!=3.1.29,>=1.0.0->wandb==0.15.12)\n", " Downloading gitdb-4.0.11-py3-none-any.whl (62 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (2.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (2023.7.22)\n", "Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb==0.15.12)\n", " Downloading smmap-5.0.1-py3-none-any.whl (24 kB)\n", "Building wheels for collected packages: pathtools\n", " Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8791 sha256=64de6a66e8b36654f7a0eedc926778646639da9d0872a196c03ba200aab96057\n", " Stored in directory: /root/.cache/pip/wheels/e7/f3/22/152153d6eb222ee7a56ff8617d80ee5207207a8c00a7aab794\n", "Successfully built pathtools\n", "Installing collected packages: pathtools, smmap, setproctitle, sentry-sdk, docker-pycreds, gitdb, GitPython, wandb\n", "Successfully installed GitPython-3.1.43 docker-pycreds-0.4.0 gitdb-4.0.11 pathtools-0.1.2 sentry-sdk-2.2.1 setproctitle-1.3.3 smmap-5.0.1 wandb-0.15.12\n", "Collecting ultralytics==8.0.186\n", " Using cached ultralytics-8.0.186-py3-none-any.whl (618 kB)\n", "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (3.7.1)\n", "Requirement already satisfied: numpy>=1.22.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (1.25.2)\n", "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (4.8.0.76)\n", "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (9.4.0)\n", "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (6.0.1)\n", "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (2.31.0)\n", "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (1.11.4)\n", "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (2.3.0+cu121)\n", "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (0.18.0+cu121)\n", "Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (4.66.4)\n", "Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (2.0.3)\n", "Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (0.13.1)\n", "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (5.9.5)\n", "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (9.0.0)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (1.2.1)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (0.10.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (4.51.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (1.4.5)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (24.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (3.1.2)\n", "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->ultralytics==8.0.186) (2023.4)\n", "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->ultralytics==8.0.186) (2024.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (2.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (2023.7.22)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (3.14.0)\n", "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (4.11.0)\n", "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (1.12)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (3.3)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (3.1.4)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (2023.6.0)\n", "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", "Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", "Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", "Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", "Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", "Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", "Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", "Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", "Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", "Collecting nvidia-nccl-cu12==2.20.5 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n", "Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (2.3.0)\n", "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.8.0->ultralytics==8.0.186)\n", " Using cached nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl (21.3 MB)\n", "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from cycler>=0.10->matplotlib>=3.3.0->ultralytics==8.0.186) (1.16.0)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8.0->ultralytics==8.0.186) (2.1.5)\n", "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8.0->ultralytics==8.0.186) (1.3.0)\n", "Installing collected packages: nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, ultralytics\n", "Successfully installed nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.5.40 nvidia-nvtx-cu12-12.1.105 ultralytics-8.0.186\n" ] } ], "source": [ "!pip install roboflow\n", "!pip install wandb==0.15.12\n", "!pip install ultralytics==8.0.186" ] }, { "cell_type": "markdown", "metadata": { "id": "W4bpYoXPdICN" }, "source": [ "# Download Dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "k2a4POcLdKPd" }, "source": [ " I downloaded the dataset from Kaggle, and re-upload it to Roboflow. This dataset contains 807 images with 3,856 bounding boxes of 3 classes:\n", "* `mask_weared_incorrect`\n", "* `with_mask`\n", "* `without_mask`\n", "\n", "After augmentations, the adataset are multiplied 3x into a total of 1,937 images.\n", "\n", "**Note**: You need to insert your Roboflow API key to run the cell below." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "hK2DcESMHFwD", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "55b5b3ab-c530-4b69-d4eb-1a21a25f7ffc" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "··········\n", "loading Roboflow workspace...\n", "loading Roboflow project...\n", "Dependency ultralytics==8.0.196 is required but found version=8.0.186, to fix: `pip install ultralytics==8.0.196`\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "Downloading Dataset Version Zip in Face-Mask-Detection-1 to yolov8:: 100%|██████████| 122925/122925 [00:07<00:00, 15438.04it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n", "Extracting Dataset Version Zip to Face-Mask-Detection-1 in yolov8:: 100%|██████████| 3886/3886 [00:01<00:00, 2398.11it/s]\n" ] } ], "source": [ "from getpass import getpass\n", "from roboflow import Roboflow\n", "\n", "rf = Roboflow(api_key=getpass())\n", "project = rf.workspace(\"manfred-michael\").project(\"face-mask-detection-4zoki\")\n", "version = project.version(1)\n", "dataset = version.download(\"yolov8\")" ] }, { "cell_type": "markdown", "metadata": { "id": "VAvLch8RecBl" }, "source": [ "The dataset would be splitted into 3 parts when we download it." ] }, { "cell_type": "markdown", "metadata": { "id": "9j2UItKteX5Q" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "SofVDqFBw5Oq" }, "source": [ "All images in this dataset are already resized into 640x640 and it also includes augmented samples. So, I don't need to do any data preparation. Roboflow handled everything for me.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "zO5bJpTMw5Oo" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "JCYjNpydw5Os" }, "source": [ "# Model Training" ] }, { "cell_type": "markdown", "metadata": { "id": "9eJha2Kyw5Os" }, "source": [ "I will use ultralytics to train YOLOv8, and WandB to monitor the training process. This wandb tracking implementation includes some advanced features that we will see shortly." ] }, { "cell_type": "code", "source": [ "# !pip install wandb" ], "metadata": { "id": "bOs6W9wX763m" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "A79lfQaaQxY4", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "ca66bfda-aef9-4865-ee23-646227e0d39e" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "WARNING ⚠️ 'ultralytics.yolo.v8' is deprecated since '8.0.136' and will be removed in '8.1.0'. Please use 'ultralytics.models.yolo' instead.\n", "WARNING ⚠️ 'ultralytics.yolo.utils' is deprecated since '8.0.136' and will be removed in '8.1.0'. Please use 'ultralytics.utils' instead.\n", "Note this warning may be related to loading older models. You can update your model to current structure with:\n", " import torch\n", " ckpt = torch.load(\"model.pt\") # applies to both official and custom models\n", " torch.save(ckpt, \"updated-model.pt\")\n", "\n" ] } ], "source": [ "import wandb\n", "from wandb.integration.ultralytics import add_wandb_callback\n", "from PIL import Image\n", "\n", "from ultralytics import YOLO" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 310, "referenced_widgets": [ "2146f10769064170acce6e7e8335cebd", "be657624c5ea43c199921c4382f7a958", "ae90885359d24008a3fd13e846a22246", "9b71788bd91f46269093c90e8fb71c0c", "fd1ba992d244494c972f0f97b775a0a7", "f9879c9d97704b37b8d6c1fff1677d97", "be3b792ad0714dfda173bd1a08979f74", "86eaffd1aa4c47c0ba920352eb4551a5" ] }, "id": "mZzOItry66VU", "outputId": "75f83701-6ed4-4760-e822-03eae536adce" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Finishing last run (ID:bw243key) before initializing another..." ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Waiting for W&B process to finish... (success)." ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "VBox(children=(Label(value='0.001 MB of 0.004 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.327454…" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "2146f10769064170acce6e7e8335cebd" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run copper-oath-3 at: https://wandb.ai/anakbangkit/verihubs-tech-assessment/runs/bw243key
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Find logs at: ./wandb/run-20240522_071908-bw243key/logs" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Successfully finished last run (ID:bw243key). Initializing new run:
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "wandb version 0.17.0 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Tracking run with wandb version 0.15.12" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Run data is saved locally in /content/wandb/run-20240522_071941-p127dd66" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Syncing run ethereal-grass-4 to Weights & Biases (docs)
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View project at https://wandb.ai/anakbangkit/verihubs-tech-assessment" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run at https://wandb.ai/anakbangkit/verihubs-tech-assessment/runs/p127dd66" ] }, "metadata": {} }, { "output_type": "execute_result", "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "execution_count": 8 } ], "source": [ "wandb.init(project=\"verihubs-tech-assessment\", job_type=\"training\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3QhRD12ABwT3", "outputId": "b7597b66-87a1-4d14-9fa7-888085361f27" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.3.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 30.2/78.2 GB disk)\n" ] } ], "source": [ "import ultralytics\n", "ultralytics.checks()" ] }, { "cell_type": "markdown", "metadata": { "id": "OjpabMQqw5Ot" }, "source": [ "I trained YOLOv8 for 10 epochs." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2iFRJbtnQ6f8", "outputId": "335d9641-7335-4439-f15d-9278d4bc527f" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "\u001b[1;30;43mOutput streaming akan dipotong hingga 5000 baris terakhir.\u001b[0m\n", " 28/80 8.54G 1.09 0.576 1.107 71 640: 100%|██████████| 106/106 [00:59<00:00, 1.79it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.25it/s]\n", " all 161 861 0.842 0.769 0.808 0.518\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 22 with_masks, 5 without_masks, 47.9ms\n", "Speed: 1.7ms preprocess, 47.9ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 1 with_mask, 7 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 1 with_mask, 3 without_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 4 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 4 with_masks, 6 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.4ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 2 without_masks, 37.3ms\n", "Speed: 2.1ms preprocess, 37.3ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 8 with_masks, 1 without_mask, 37.3ms\n", "Speed: 2.3ms preprocess, 37.3ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 12 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 5 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 4 without_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 25 with_masks, 4 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 1 without_mask, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 29/80 8.6G 1.077 0.5726 1.101 103 640: 100%|██████████| 106/106 [00:58<00:00, 1.82it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.83it/s]\n", " all 161 861 0.881 0.753 0.825 0.539\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 1 with_mask, 38.3ms\n", "Speed: 5.0ms preprocess, 38.3ms inference, 9.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 2 mask_weared_incorrects, 10 with_masks, 2 without_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 2 mask_weared_incorrects, 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 21 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 14 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 9 without_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 37.4ms\n", "Speed: 2.0ms preprocess, 37.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 10 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.4ms\n", "Speed: 2.0ms preprocess, 37.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 5 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 5 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 6 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 30/80 8.64G 1.076 0.5669 1.098 86 640: 100%|██████████| 106/106 [01:00<00:00, 1.76it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.73it/s]\n", " all 161 861 0.902 0.709 0.812 0.525\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 10 with_masks, 41.6ms\n", "Speed: 7.2ms preprocess, 41.6ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 31/80 8.72G 1.071 0.5658 1.102 115 640: 100%|██████████| 106/106 [00:59<00:00, 1.79it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.53it/s]\n", " all 161 861 0.799 0.751 0.786 0.497\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 38.5ms\n", "Speed: 3.9ms preprocess, 38.5ms inference, 11.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 5.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 15 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 4 with_masks, 3 without_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 108 with_masks, 23 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 2 mask_weared_incorrects, 21 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 3 mask_weared_incorrects, 10 with_masks, 6 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 7 with_masks, 2 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 1.7ms preprocess, 37.3ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 8 with_masks, 7 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 3 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 3.0ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 9 with_masks, 4 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 2 with_masks, 1 without_mask, 38.2ms\n", "Speed: 1.8ms preprocess, 38.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 8 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 (no detections), 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 1.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 32/80 8.79G 1.071 0.5651 1.096 106 640: 100%|██████████| 106/106 [01:00<00:00, 1.76it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.22it/s]\n", " all 161 861 0.836 0.805 0.828 0.527\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 38.5ms\n", "Speed: 1.7ms preprocess, 38.5ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 6 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 10 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 8 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 16 with_masks, 5 without_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.5ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 2 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 38.1ms\n", "Speed: 1.8ms preprocess, 38.1ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 4.1ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 38.3ms\n", "Speed: 2.1ms preprocess, 38.3ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 33/80 8.85G 1.046 0.5498 1.083 93 640: 100%|██████████| 106/106 [01:00<00:00, 1.75it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.02it/s]\n", " all 161 861 0.87 0.79 0.824 0.519\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 2 with_masks, 44.8ms\n", "Speed: 1.7ms preprocess, 44.8ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 21 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 3 mask_weared_incorrects, 10 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 1 mask_weared_incorrect, 14 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 9 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 7 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 8 with_masks, 6 without_masks, 37.1ms\n", "Speed: 2.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 1 mask_weared_incorrect, 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 5 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 1 mask_weared_incorrect, 43 with_masks, 6 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 5 with_masks, 37.4ms\n", "Speed: 2.2ms preprocess, 37.4ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 3 without_masks, 37.1ms\n", "Speed: 2.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 13 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 15 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 5 without_masks, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 11 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 34/80 8.86G 1.049 0.5441 1.084 131 640: 100%|██████████| 106/106 [01:00<00:00, 1.75it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.17it/s]\n", " all 161 861 0.821 0.718 0.785 0.507\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 20 with_masks, 2 without_masks, 51.5ms\n", "Speed: 1.9ms preprocess, 51.5ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 40.8ms\n", "Speed: 3.9ms preprocess, 40.8ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 37.7ms\n", "Speed: 1.9ms preprocess, 37.7ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 2.1ms preprocess, 37.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 38.1ms\n", "Speed: 1.9ms preprocess, 38.1ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 4 with_masks, 2 without_masks, 38.9ms\n", "Speed: 2.0ms preprocess, 38.9ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 1 without_mask, 40.9ms\n", "Speed: 1.8ms preprocess, 40.9ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 6 with_masks, 1 without_mask, 38.0ms\n", "Speed: 3.5ms preprocess, 38.0ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.6ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 7 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 3 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 2 without_masks, 37.1ms\n", "Speed: 3.0ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 19 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 35/80 8.9G 1.02 0.5384 1.081 56 640: 100%|██████████| 106/106 [00:59<00:00, 1.78it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.87it/s]\n", " all 161 861 0.84 0.787 0.827 0.518\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 2 with_masks, 38.6ms\n", "Speed: 1.7ms preprocess, 38.6ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 12.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 1 without_mask, 37.4ms\n", "Speed: 2.2ms preprocess, 37.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 4.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 2 with_masks, 1 without_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 17 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 3.2ms preprocess, 37.2ms inference, 4.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 1 mask_weared_incorrect, 11 with_masks, 2 without_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 11 with_masks, 10 without_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 4.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 39.2ms\n", "Speed: 1.7ms preprocess, 39.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 4.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 10 with_masks, 39.0ms\n", "Speed: 1.9ms preprocess, 39.0ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 4.9ms preprocess, 37.1ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 36/80 9.03G 1.026 0.5305 1.074 122 640: 100%|██████████| 106/106 [01:00<00:00, 1.76it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.19it/s]\n", " all 161 861 0.785 0.767 0.797 0.497\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 14 with_masks, 49.0ms\n", "Speed: 2.9ms preprocess, 49.0ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 37/80 9.07G 1.014 0.5258 1.072 91 640: 100%|██████████| 106/106 [00:59<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.35it/s]\n", " all 161 861 0.855 0.808 0.845 0.534\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 45.7ms\n", "Speed: 2.0ms preprocess, 45.7ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 14 with_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 4 with_masks, 3 without_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 102 with_masks, 16 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 1 mask_weared_incorrect, 20 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 3.1ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 3 mask_weared_incorrects, 7 with_masks, 7 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 6 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 4.0ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 6 with_masks, 6 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 11 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 8 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 38/80 9.11G 1.018 0.5264 1.065 132 640: 100%|██████████| 106/106 [00:59<00:00, 1.78it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.27it/s]\n", " all 161 861 0.875 0.756 0.82 0.51\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 39.4ms\n", "Speed: 4.1ms preprocess, 39.4ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.6ms\n", "Speed: 2.7ms preprocess, 37.6ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 9 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 39.4ms\n", "Speed: 1.9ms preprocess, 39.4ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 6 with_masks, 37.3ms\n", "Speed: 2.2ms preprocess, 37.3ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 5.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 10 with_masks, 5 without_masks, 37.2ms\n", "Speed: 5.8ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 6 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 2 with_masks, 38.7ms\n", "Speed: 2.0ms preprocess, 38.7ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 38.8ms\n", "Speed: 2.0ms preprocess, 38.8ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 39/80 9.19G 1.001 0.5244 1.059 87 640: 100%|██████████| 106/106 [00:59<00:00, 1.78it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.21it/s]\n", " all 161 861 0.886 0.748 0.812 0.516\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 1 with_mask, 43.6ms\n", "Speed: 1.7ms preprocess, 43.6ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 19 with_masks, 1 without_mask, 44.9ms\n", "Speed: 1.8ms preprocess, 44.9ms inference, 10.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 11 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 8 with_masks, 7 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 2 mask_weared_incorrects, 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 2.0ms preprocess, 37.4ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 5 with_masks, 4 without_masks, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 51 with_masks, 2 without_masks, 37.5ms\n", "Speed: 2.1ms preprocess, 37.5ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 39.7ms\n", "Speed: 2.0ms preprocess, 39.7ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 3 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 13 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 15 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 7 with_masks, 4 without_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 10 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 2 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 40/80 9.34G 0.9872 0.5144 1.056 121 640: 100%|██████████| 106/106 [00:59<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.23it/s]\n", " all 161 861 0.836 0.754 0.819 0.532\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 16 with_masks, 1 without_mask, 38.6ms\n", "Speed: 1.7ms preprocess, 38.6ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 42.6ms\n", "Speed: 3.0ms preprocess, 42.6ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 2 with_masks, 40.6ms\n", "Speed: 1.8ms preprocess, 40.6ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 2.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.4ms\n", "Speed: 1.8ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 3 with_masks, 4 without_masks, 41.2ms\n", "Speed: 1.8ms preprocess, 41.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.3ms\n", "Speed: 2.1ms preprocess, 37.3ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 7 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 6 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 4.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 2.3ms preprocess, 37.3ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.3ms\n", "Speed: 2.8ms preprocess, 37.3ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 6.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 19 with_masks, 37.4ms\n", "Speed: 1.8ms preprocess, 37.4ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 41/80 9.29G 0.9788 0.513 1.053 77 640: 100%|██████████| 106/106 [00:59<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.89it/s]\n", " all 161 861 0.877 0.731 0.824 0.537\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 3 with_masks, 44.6ms\n", "Speed: 7.4ms preprocess, 44.6ms inference, 9.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 4 with_masks, 45.3ms\n", "Speed: 3.0ms preprocess, 45.3ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 6.5ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 2 mask_weared_incorrects, 8 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 7.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 5 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 2 mask_weared_incorrects, 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 1 with_mask, 2 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 18 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 9 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 8 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 6 with_masks, 37.3ms\n", "Speed: 2.7ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 5 with_masks, 37.8ms\n", "Speed: 2.2ms preprocess, 37.8ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 2 with_masks, 37.5ms\n", "Speed: 2.1ms preprocess, 37.5ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 2.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 4 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 42/80 9.42G 0.9645 0.4966 1.044 115 640: 100%|██████████| 106/106 [01:00<00:00, 1.75it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.22it/s]\n", " all 161 861 0.849 0.726 0.806 0.525\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 10 with_masks, 38.7ms\n", "Speed: 1.8ms preprocess, 38.7ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 43/80 9.44G 0.9858 0.4992 1.045 84 640: 100%|██████████| 106/106 [01:01<00:00, 1.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.14it/s]\n", " all 161 861 0.89 0.773 0.825 0.544\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 38.7ms\n", "Speed: 13.3ms preprocess, 38.7ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 45.6ms\n", "Speed: 5.4ms preprocess, 45.6ms inference, 7.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 16 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 4 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 1 mask_weared_incorrect, 102 with_masks, 25 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 1 mask_weared_incorrect, 22 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 3 mask_weared_incorrects, 6 with_masks, 7 without_masks, 37.1ms\n", "Speed: 4.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 6 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 1 mask_weared_incorrect, 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 7 with_masks, 7 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 10 with_masks, 37.2ms\n", "Speed: 1.5ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 2 mask_weared_incorrects, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 9 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 7 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 44/80 9.47G 0.9401 0.4742 1.035 100 640: 100%|██████████| 106/106 [01:00<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.15it/s]\n", " all 161 861 0.872 0.744 0.806 0.518\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 38.6ms\n", "Speed: 1.7ms preprocess, 38.6ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 7 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 2.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 6 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 11 with_masks, 5 without_masks, 37.7ms\n", "Speed: 1.8ms preprocess, 37.7ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 37.6ms\n", "Speed: 1.9ms preprocess, 37.6ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 6 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 4.3ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 1 mask_weared_incorrect, 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 45/80 9.59G 0.9338 0.4761 1.031 96 640: 100%|██████████| 106/106 [01:01<00:00, 1.74it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.19it/s]\n", " all 161 861 0.892 0.786 0.824 0.533\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 1 with_mask, 46.7ms\n", "Speed: 1.9ms preprocess, 46.7ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 20 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 18 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 6 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 4 with_masks, 38.2ms\n", "Speed: 1.8ms preprocess, 38.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 9 with_masks, 7 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 3.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 5 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 42 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 5 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 2 without_masks, 38.0ms\n", "Speed: 2.2ms preprocess, 38.0ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 13 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 14 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 7 with_masks, 4 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 3.7ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 9 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 3 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 46/80 9.62G 0.9246 0.4633 1.025 88 640: 100%|██████████| 106/106 [01:03<00:00, 1.66it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.93it/s]\n", " all 161 861 0.894 0.784 0.829 0.529\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 17 with_masks, 1 without_mask, 47.0ms\n", "Speed: 1.9ms preprocess, 47.0ms inference, 7.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 2.4ms preprocess, 37.3ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 2 with_masks, 37.4ms\n", "Speed: 2.1ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 3 with_masks, 3 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.6ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 7 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 7 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 2 with_masks, 37.4ms\n", "Speed: 1.8ms preprocess, 37.4ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 20 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 37.3ms\n", "Speed: 1.7ms preprocess, 37.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 47/80 9.57G 0.9267 0.4664 1.031 118 640: 100%|██████████| 106/106 [01:02<00:00, 1.71it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.25it/s]\n", " all 161 861 0.876 0.819 0.845 0.552\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 1 with_mask, 48.9ms\n", "Speed: 5.5ms preprocess, 48.9ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 3 with_masks, 39.8ms\n", "Speed: 1.9ms preprocess, 39.8ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 1 mask_weared_incorrect, 7 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 5 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 1 with_mask, 1 without_mask, 37.3ms\n", "Speed: 2.7ms preprocess, 37.3ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 18 with_masks, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 10 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 12 with_masks, 8 without_masks, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 8 with_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 3.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 4.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 37.2ms\n", "Speed: 6.6ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 48/80 9.73G 0.9063 0.461 1.019 164 640: 100%|██████████| 106/106 [01:06<00:00, 1.60it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.82it/s]\n", " all 161 861 0.891 0.762 0.832 0.534\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 13 with_masks, 40.0ms\n", "Speed: 4.0ms preprocess, 40.0ms inference, 15.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 49/80 9.67G 0.8964 0.4531 1.017 86 640: 100%|██████████| 106/106 [01:10<00:00, 1.50it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.91it/s]\n", " all 161 861 0.915 0.764 0.846 0.54\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 38.8ms\n", "Speed: 5.5ms preprocess, 38.8ms inference, 11.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 2 with_masks, 37.4ms\n", "Speed: 5.1ms preprocess, 37.4ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 37.9ms\n", "Speed: 1.8ms preprocess, 37.9ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 11 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 4 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 101 with_masks, 20 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 1 mask_weared_incorrect, 20 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 4.2ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 2 mask_weared_incorrects, 6 with_masks, 8 without_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 6 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 5.4ms preprocess, 37.3ms inference, 3.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 1 mask_weared_incorrect, 7 with_masks, 7 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 9 with_masks, 4 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 7 with_masks, 3 without_masks, 37.2ms\n", "Speed: 2.6ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 8 with_masks, 41.5ms\n", "Speed: 1.9ms preprocess, 41.5ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 50/80 9.77G 0.8982 0.4541 1.022 55 640: 100%|██████████| 106/106 [01:06<00:00, 1.59it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.87it/s]\n", " all 161 861 0.851 0.805 0.842 0.541\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 38.5ms\n", "Speed: 1.6ms preprocess, 38.5ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 8 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 13 with_masks, 4 without_masks, 37.2ms\n", "Speed: 3.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 11 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 4.8ms preprocess, 37.2ms inference, 6.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 51/80 9.85G 0.8893 0.4496 1.017 135 640: 100%|██████████| 106/106 [01:00<00:00, 1.76it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.22it/s]\n", " all 161 861 0.875 0.763 0.812 0.525\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 1 with_mask, 50.9ms\n", "Speed: 7.3ms preprocess, 50.9ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 18 with_masks, 1 without_mask, 37.3ms\n", "Speed: 4.9ms preprocess, 37.3ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 4 mask_weared_incorrects, 9 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 14 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 5 with_masks, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 8 with_masks, 7 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 3 with_masks, 37.6ms\n", "Speed: 3.9ms preprocess, 37.6ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 5 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 42 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 4.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 3 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 14 with_masks, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 15 with_masks, 37.3ms\n", "Speed: 2.9ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 1 mask_weared_incorrect, 7 with_masks, 4 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 10 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 2 without_masks, 37.2ms\n", "Speed: 2.6ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 52/80 9.87G 0.8786 0.4452 1.011 154 640: 100%|██████████| 106/106 [01:04<00:00, 1.65it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.70it/s]\n", " all 161 861 0.829 0.775 0.825 0.526\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 19 with_masks, 1 without_mask, 65.3ms\n", "Speed: 1.8ms preprocess, 65.3ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 38.5ms\n", "Speed: 1.9ms preprocess, 38.5ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 2 with_masks, 37.8ms\n", "Speed: 6.6ms preprocess, 37.8ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 3.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 3 with_masks, 39.4ms\n", "Speed: 1.8ms preprocess, 39.4ms inference, 7.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 3.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 4.1ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 4 with_masks, 2 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 5 with_masks, 1 without_mask, 37.4ms\n", "Speed: 2.4ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 37.8ms\n", "Speed: 1.8ms preprocess, 37.8ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 7 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 2.5ms preprocess, 37.3ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 2 without_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 7 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 4.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 23 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 1 without_mask, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 37.4ms\n", "Speed: 2.0ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 53/80 9.99G 0.8738 0.4471 1.004 112 640: 100%|██████████| 106/106 [01:00<00:00, 1.74it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.19it/s]\n", " all 161 861 0.824 0.78 0.823 0.532\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 1 with_mask, 48.8ms\n", "Speed: 2.2ms preprocess, 48.8ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 5 with_masks, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 5 with_masks, 37.4ms\n", "Speed: 2.8ms preprocess, 37.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 5 with_masks, 1 without_mask, 37.6ms\n", "Speed: 1.8ms preprocess, 37.6ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 1 with_mask, 1 without_mask, 38.6ms\n", "Speed: 1.8ms preprocess, 38.6ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 4 with_masks, 2 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 19 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 1 mask_weared_incorrect, 12 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 1 mask_weared_incorrect, 12 with_masks, 8 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.3ms\n", "Speed: 2.1ms preprocess, 37.3ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 10 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 2 with_masks, 39.9ms\n", "Speed: 1.9ms preprocess, 39.9ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 54/80 10G 0.8735 0.4425 1.002 120 640: 100%|██████████| 106/106 [01:05<00:00, 1.63it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.60it/s]\n", " all 161 861 0.867 0.773 0.826 0.542\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 11 with_masks, 42.7ms\n", "Speed: 8.2ms preprocess, 42.7ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 55/80 10G 0.8592 0.4363 0.9941 89 640: 100%|██████████| 106/106 [01:08<00:00, 1.55it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.08it/s]\n", " all 161 861 0.829 0.807 0.816 0.531\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 48.0ms\n", "Speed: 7.0ms preprocess, 48.0ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.6ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 13 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 4 with_masks, 2 without_masks, 37.2ms\n", "Speed: 8.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 2.5ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 104 with_masks, 15 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 1 mask_weared_incorrect, 21 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 3 mask_weared_incorrects, 6 with_masks, 8 without_masks, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 3.1ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 37.2ms\n", "Speed: 3.1ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 6 with_masks, 2 without_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 7 with_masks, 7 without_masks, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 8 with_masks, 38.0ms\n", "Speed: 1.9ms preprocess, 38.0ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 10 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 7 with_masks, 3 without_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 56/80 10.1G 0.8384 0.4295 0.9918 90 640: 100%|██████████| 106/106 [01:11<00:00, 1.49it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.83it/s]\n", " all 161 861 0.893 0.781 0.841 0.551\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 38.6ms\n", "Speed: 1.9ms preprocess, 38.6ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 7 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.3ms\n", "Speed: 2.5ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 1 mask_weared_incorrect, 11 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 9 with_masks, 2 without_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 10 with_masks, 4 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 9 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 4.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 4.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 2 mask_weared_incorrects, 37.2ms\n", "Speed: 6.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 6 with_masks, 1 without_mask, 37.6ms\n", "Speed: 1.9ms preprocess, 37.6ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 1 without_mask, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 5.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 57/80 10.2G 0.8435 0.4276 0.991 72 640: 100%|██████████| 106/106 [01:09<00:00, 1.53it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.79it/s]\n", " all 161 861 0.856 0.799 0.813 0.525\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 2 with_masks, 40.5ms\n", "Speed: 2.1ms preprocess, 40.5ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 19 with_masks, 1 without_mask, 39.4ms\n", "Speed: 2.5ms preprocess, 39.4ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 3 mask_weared_incorrects, 8 with_masks, 2 without_masks, 38.5ms\n", "Speed: 2.5ms preprocess, 38.5ms inference, 6.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 6 with_masks, 37.3ms\n", "Speed: 2.2ms preprocess, 37.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 9 with_masks, 6 without_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.6ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 5 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 41 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 1 with_mask, 39.7ms\n", "Speed: 2.1ms preprocess, 39.7ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 3 with_masks, 37.4ms\n", "Speed: 2.2ms preprocess, 37.4ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 3 without_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 13 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 14 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 1 mask_weared_incorrect, 7 with_masks, 5 without_masks, 37.2ms\n", "Speed: 2.5ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 4.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 2 without_masks, 37.2ms\n", "Speed: 3.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 58/80 10.2G 0.8201 0.4239 0.9837 99 640: 100%|██████████| 106/106 [01:04<00:00, 1.64it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.26it/s]\n", " all 161 861 0.874 0.774 0.819 0.536\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 1 mask_weared_incorrect, 18 with_masks, 2 without_masks, 38.6ms\n", "Speed: 1.7ms preprocess, 38.6ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 3.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 3 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 7 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 7 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.6ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 22 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 2 without_masks, 40.6ms\n", "Speed: 1.9ms preprocess, 40.6ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 59/80 10.3G 0.8283 0.4195 0.9829 104 640: 100%|██████████| 106/106 [01:01<00:00, 1.71it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.64it/s]\n", " all 161 861 0.856 0.786 0.829 0.536\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 2 with_masks, 46.1ms\n", "Speed: 1.8ms preprocess, 46.1ms inference, 9.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 3 with_masks, 37.6ms\n", "Speed: 9.7ms preprocess, 37.6ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 37.1ms\n", "Speed: 6.1ms preprocess, 37.1ms inference, 6.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 5 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 5.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 5 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 5.2ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 1 with_mask, 1 without_mask, 40.2ms\n", "Speed: 1.7ms preprocess, 40.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 17 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 3.1ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 11 with_masks, 2 without_masks, 37.1ms\n", "Speed: 3.9ms preprocess, 37.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 8 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 3.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.9ms\n", "Speed: 1.9ms preprocess, 37.9ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 60/80 10.4G 0.8154 0.416 0.9786 102 640: 100%|██████████| 106/106 [00:59<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.26it/s]\n", " all 161 861 0.922 0.767 0.843 0.542\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 12 with_masks, 44.3ms\n", "Speed: 1.6ms preprocess, 44.3ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 61/80 10.4G 0.7983 0.4074 0.9735 109 640: 100%|██████████| 106/106 [00:59<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.33it/s]\n", " all 161 861 0.882 0.765 0.836 0.54\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 44.3ms\n", "Speed: 4.7ms preprocess, 44.3ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 12 with_masks, 37.3ms\n", "Speed: 2.1ms preprocess, 37.3ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 3 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.6ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 94 with_masks, 20 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 1 mask_weared_incorrect, 20 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 2 mask_weared_incorrects, 6 with_masks, 7 without_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 6 with_masks, 2 without_masks, 37.3ms\n", "Speed: 2.1ms preprocess, 37.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 4 with_masks, 37.4ms\n", "Speed: 2.1ms preprocess, 37.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 3 with_masks, 1 without_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 7 with_masks, 7 without_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 2 mask_weared_incorrects, 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 9 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 5.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 7 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 62/80 10.5G 0.7956 0.405 0.9638 74 640: 100%|██████████| 106/106 [01:01<00:00, 1.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.26it/s]\n", " all 161 861 0.895 0.738 0.819 0.527\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 40.1ms\n", "Speed: 1.9ms preprocess, 40.1ms inference, 9.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 8 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 1 with_mask, 37.4ms\n", "Speed: 2.7ms preprocess, 37.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 7 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.6ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 10 with_masks, 6 without_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 11 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 5.1ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 39.8ms\n", "Speed: 1.8ms preprocess, 39.8ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 1 without_mask, 37.4ms\n", "Speed: 2.2ms preprocess, 37.4ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 63/80 10.5G 0.7792 0.3974 0.9639 100 640: 100%|██████████| 106/106 [01:00<00:00, 1.77it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.78it/s]\n", " all 161 861 0.923 0.769 0.856 0.557\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 1 with_mask, 44.6ms\n", "Speed: 1.8ms preprocess, 44.6ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 19 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 2 mask_weared_incorrects, 8 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 12 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 8 with_masks, 6 without_masks, 37.1ms\n", "Speed: 2.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 2 mask_weared_incorrects, 3 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 3.1ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 5 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 41 with_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 6 with_masks, 1 without_mask, 37.2ms\n", "Speed: 6.1ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 37.9ms\n", "Speed: 1.8ms preprocess, 37.9ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 3.8ms preprocess, 37.2ms inference, 5.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 2 without_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 14 with_masks, 37.2ms\n", "Speed: 2.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 without_mask, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 14 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 7 with_masks, 4 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 38.7ms\n", "Speed: 1.9ms preprocess, 38.7ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 9 with_masks, 37.2ms\n", "Speed: 4.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 12 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 2 without_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 64/80 10.5G 0.773 0.3889 0.9626 59 640: 100%|██████████| 106/106 [01:00<00:00, 1.76it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.91it/s]\n", " all 161 861 0.905 0.752 0.827 0.552\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 1 mask_weared_incorrect, 19 with_masks, 3 without_masks, 73.9ms\n", "Speed: 1.8ms preprocess, 73.9ms inference, 4.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 3 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.3ms\n", "Speed: 2.4ms preprocess, 37.3ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 6 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 7 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 2 with_masks, 37.3ms\n", "Speed: 2.3ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 3 without_masks, 37.4ms\n", "Speed: 1.8ms preprocess, 37.4ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 22 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 1 without_mask, 37.1ms\n", "Speed: 2.4ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 65/80 10.6G 0.7668 0.395 0.9549 220 640: 100%|██████████| 106/106 [01:00<00:00, 1.75it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.10it/s]\n", " all 161 861 0.901 0.769 0.832 0.551\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 1 with_mask, 101.1ms\n", "Speed: 1.7ms preprocess, 101.1ms inference, 5.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 2 with_masks, 39.9ms\n", "Speed: 1.9ms preprocess, 39.9ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 37.2ms\n", "Speed: 2.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 4 with_masks, 1 without_mask, 37.9ms\n", "Speed: 1.9ms preprocess, 37.9ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 3 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 19 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 9 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 40.6ms\n", "Speed: 2.0ms preprocess, 40.6ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 6 with_masks, 37.1ms\n", "Speed: 2.5ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.8ms\n", "Speed: 1.9ms preprocess, 37.8ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 9 with_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 66/80 10.6G 0.7636 0.3859 0.9584 89 640: 100%|██████████| 106/106 [01:04<00:00, 1.64it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:04<00:00, 1.47it/s]\n", " all 161 861 0.908 0.762 0.829 0.538\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 12 with_masks, 87.2ms\n", "Speed: 2.4ms preprocess, 87.2ms inference, 10.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 67/80 10.7G 0.7531 0.3801 0.9556 87 640: 100%|██████████| 106/106 [01:01<00:00, 1.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.22it/s]\n", " all 161 861 0.851 0.792 0.835 0.547\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss107_png.rf.285757ad3a789f0d69380282b3bdb846.jpg: 640x640 1 with_mask, 80.8ms\n", "Speed: 4.1ms preprocess, 80.8ms inference, 10.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss569_png.rf.245d020288f15a704c2742a49eb1ca63.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 5.0ms preprocess, 37.2ms inference, 8.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss56_png.rf.ffec370c63bb3ee301d05f9ce072e3fa.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss577_png.rf.99d8deb18d344f24bb95f02394713470.jpg: 640x640 13 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.5ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss585_png.rf.16b40d54481e86f0a1434d30bc6d9c64.jpg: 640x640 4 with_masks, 2 without_masks, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss595_png.rf.f3a260412881f24273c64d6bd6e1966b.jpg: 640x640 6 with_masks, 38.3ms\n", "Speed: 1.7ms preprocess, 38.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss596_png.rf.9bf29752ebe873bc099ff9b64ddef6d1.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss603_png.rf.0d06c5299fd1cf3136e68b97a2afa4fd.jpg: 640x640 95 with_masks, 19 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss568_png.rf.a4d4a4e139954b5194617ef2e9ffc81c.jpg: 640x640 1 with_mask, 39.7ms\n", "Speed: 1.9ms preprocess, 39.7ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss608_png.rf.4806b67fedacda192a8448bcf3b53d64.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss623_png.rf.19a2c6b529d5478510934f467949c887.jpg: 640x640 1 mask_weared_incorrect, 21 with_masks, 3 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss626_png.rf.4a2f1a57a893fdcef400930251142f52.jpg: 640x640 1 with_mask, 37.7ms\n", "Speed: 1.9ms preprocess, 37.7ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss627_png.rf.81b096f6b0f9e897cc64f59880e630e0.jpg: 640x640 1 mask_weared_incorrect, 6 with_masks, 7 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss630_png.rf.d1ecd7de587fb5c2571563293babff62.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss631_png.rf.418be1a60a0224818dc54e0d2281c6f4.jpg: 640x640 11 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss636_png.rf.e6889a20be3cb52fa81b195fdef01b58.jpg: 640x640 6 with_masks, 2 without_masks, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss645_png.rf.d577b2fbdae8c09e7cb396b9c14f18d7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss619_png.rf.bc1dcbfae2f9104ce082afe801399f54.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss646_png.rf.a434ddc2569b34a89bbb07a259996497.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 7.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss563_png.rf.dc088c07f08e5fba01fd6bddeceb27e2.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 3.7ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss554_png.rf.ba664c8fdc34b11faff3a128d06dbe9a.jpg: 640x640 5 with_masks, 42.7ms\n", "Speed: 1.9ms preprocess, 42.7ms inference, 4.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss473_png.rf.6de35811442245ad013a2676e2bcaa0a.jpg: 640x640 3 with_masks, 1 without_mask, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 5.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss477_png.rf.0e319d347398d08b8a52fb6a152de44e.jpg: 640x640 6 with_masks, 7 without_masks, 37.2ms\n", "Speed: 5.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss481_png.rf.6682292ffe5179b26d46c8515797446e.jpg: 640x640 6 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss483_png.rf.4c059c2770f996153e3487a7f52f771c.jpg: 640x640 3 with_masks, 2 without_masks, 40.5ms\n", "Speed: 1.9ms preprocess, 40.5ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss484_png.rf.a57bfdb112b858aa9ed93bf36306ac61.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.4ms\n", "Speed: 3.2ms preprocess, 37.4ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss498_png.rf.095899d089070e7a5a7697113b108f8a.jpg: 640x640 10 with_masks, 3 without_masks, 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss499_png.rf.611bdf8f03aea1d86028c7b5d7d494ec.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss560_png.rf.bc8e65e2733e0f7b723391d33c380fe0.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss49_png.rf.d4077078d124ff3d3d699fc94bd06150.jpg: 640x640 7 with_masks, 2 without_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss509_png.rf.6470c0dd2a6a4b05117cca6aad267087.jpg: 640x640 (no detections), 37.4ms\n", "Speed: 1.9ms preprocess, 37.4ms inference, 1.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss512_png.rf.8dbd72e69a164fdcdad2e220bcd0c467.jpg: 640x640 7 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 68/80 10.7G 0.7499 0.382 0.9592 66 640: 100%|██████████| 106/106 [01:01<00:00, 1.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.11it/s]\n", " all 161 861 0.885 0.771 0.829 0.542\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss515_png.rf.9b8d660e9368ee9ccfeb977e609167ed.jpg: 640x640 1 with_mask, 76.5ms\n", "Speed: 1.7ms preprocess, 76.5ms inference, 6.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss529_png.rf.6ae323861cb838fc945c80ee31070c4c.jpg: 640x640 1 mask_weared_incorrect, 6 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss532_png.rf.03aa559343f932efbfa3753190291fa7.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss537_png.rf.f22f4997ea93880ebfa2cb19a893caad.jpg: 640x640 1 without_mask, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss551_png.rf.010062fb38326dac49ecca8d9322953f.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss501_png.rf.125122fa5a318ec6d0e27d632764f840.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 3.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss649_png.rf.5540865cd8826940d55b3b48c045183c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss64_png.rf.4b8ca34d17365fb62029fdbee94cb0aa.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss653_png.rf.22cf40d34bad20f7f9b542b6a0a89e2f.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss787_png.rf.a7e026e8082789734a57252cf6df81e5.jpg: 640x640 8 with_masks, 2 without_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss793_png.rf.dd2be948b6231ceb68a6af8371f2329c.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss797_png.rf.5ead12df141e267f928b7b34c73dfb1a.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss79_png.rf.e12280d9bd602d3e52504b83921437d6.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss806_png.rf.504dc192775390a4b3f7d6b85bc58636.jpg: 640x640 6 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss808_png.rf.b2e534caaaf701b8674add21e64fd528.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss822_png.rf.8601f2a416cbe3f239fde9934f5f66d2.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 4 without_masks, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss784_png.rf.b95afb3096062e72503f25dfdaf53f52.jpg: 640x640 11 with_masks, 2 without_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss828_png.rf.ef40e6fb83c895f7c4ca491dadbcecb1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss832_png.rf.fd2d4b0fa4b62433e71f92aa8f1bc067.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss834_png.rf.c14acf559bb5531c92d3cf19a5193aa2.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss835_png.rf.b8a44eb8c868a51999b450873338a62a.jpg: 640x640 1 mask_weared_incorrect, 2 with_masks, 37.2ms\n", "Speed: 1.7ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss840_png.rf.78c778f16a6a87f204473b70c7e735b1.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.2ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss844_png.rf.98f015b79733ae45cfff40da2c6eb85c.jpg: 640x640 2 with_masks, 37.5ms\n", "Speed: 1.9ms preprocess, 37.5ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss846_png.rf.f600f86418cd50b99d7116344abfe0df.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss848_png.rf.a1793122f2a5ab2b5a3d7be92157ea6b.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss830_png.rf.c8684a6a7e69bd43d4d35d54f2004fd7.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 2.2ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss761_png.rf.666e2aaecaf296dc7fe39031d857300a.jpg: 640x640 1 mask_weared_incorrect, 37.2ms\n", "Speed: 2.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss751_png.rf.dad3bdfd78335be99b02ca0f7f0a6679.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss748_png.rf.75b65aa87d1ab4b31a47b7e3f80a43c3.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss658_png.rf.18a299a86c94f8a6784af81f2f6b6c89.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss65_png.rf.f3dacea8ddea2ac8019c39c83bcec5c4.jpg: 640x640 2 with_masks, 1 without_mask, 40.6ms\n", "Speed: 1.7ms preprocess, 40.6ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss662_png.rf.0dec50b3c2f682da13df8167851159b8.jpg: 640x640 4 with_masks, 37.6ms\n", "Speed: 4.2ms preprocess, 37.6ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 69/80 11G 0.7407 0.3803 0.957 171 640: 100%|██████████| 106/106 [01:02<00:00, 1.68it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.20it/s]\n", " all 161 861 0.869 0.767 0.806 0.531\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss664_png.rf.d7257f69f379e30582c9d5854e4bb093.jpg: 640x640 2 with_masks, 50.2ms\n", "Speed: 4.5ms preprocess, 50.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss674_png.rf.7848cd9439fa5dc0f5b03471912cdd27.jpg: 640x640 19 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss680_png.rf.6430e43e329f2bd17482dab5d188875a.jpg: 640x640 3 mask_weared_incorrects, 8 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss691_png.rf.68076bbedb2a9c8ce1c37ba0bc259d8c.jpg: 640x640 10 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss694_png.rf.92b3468ed6b2d74d6e8e47c151e871a0.jpg: 640x640 5 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss708_png.rf.0b01c6531d4980ea30cfde314a37ac52.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss714_png.rf.c59ce90ae182b29cc037c99b47028dd2.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss723_png.rf.4f8f04c5a74149652aaa8862ac9acb2a.jpg: 640x640 8 with_masks, 6 without_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss725_png.rf.24ef1eeec5e346d219ce1633e649949c.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss72_png.rf.b94af68c76d704d083fc9720d480ef93.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss733_png.rf.bde25a6afb7d3fef880a5c9723c5c30d.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss73_png.rf.4f856521249c200a0dac653cddd51e50.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss744_png.rf.a8b60de6dbbfeb80df902a739b90f925.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss747_png.rf.09f39fbe610327e3092119f0e0a091ff.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss471_png.rf.c52f488eaed280f80c7d3e439c0c4e2a.jpg: 640x640 6 with_masks, 4 without_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss89_png.rf.0459d0e0116e154559a89c1975734728.jpg: 640x640 36 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss470_png.rf.3fca085941c9a6dbd4e79ea151f97079.jpg: 640x640 5 with_masks, 37.4ms\n", "Speed: 2.0ms preprocess, 37.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss461_png.rf.6316f0f312cd4c8c93c77f83f5484af9.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss230_png.rf.1fe3136ab2b6bffc7cd0b6e65101870c.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss236_png.rf.ea526bb945fec0e07973f2cd052ef688.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss241_png.rf.01c103b7f1b42f6eaaa3f4c67d5e063a.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss242_png.rf.048ddfefd131055beb8263c92bbb62a8.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss244_png.rf.f9240dd571e5670cad3b769290bbd680.jpg: 640x640 1 with_mask, 2 without_masks, 37.2ms\n", "Speed: 6.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss247_png.rf.f67e30adf66e59df979a1db74326bd5b.jpg: 640x640 14 with_masks, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 5.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss248_png.rf.c19d9460b893693e4b637a1f7df7008a.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss229_png.rf.45ba617a90c78bc0e8e547bffedbe3c3.jpg: 640x640 15 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss253_png.rf.93b13ca348adf361296ed659d6acfe75.jpg: 640x640 7 with_masks, 5 without_masks, 38.7ms\n", "Speed: 1.8ms preprocess, 38.7ms inference, 4.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss264_png.rf.7018fdf357ffc35189a710fdfc752b52.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss271_png.rf.cc2239f13f1ebcc7519a1b37fc36376a.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 3.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss277_png.rf.12d1ae22a19b53135a7172821eaf2559.jpg: 640x640 8 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss282_png.rf.32d06bf0012896891f681325fa56166d.jpg: 640x640 11 with_masks, 1 without_mask, 37.1ms\n", "Speed: 6.8ms preprocess, 37.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss289_png.rf.fee0ba4040ee03de9c67793e8127c627.jpg: 640x640 2 without_masks, 37.2ms\n", "Speed: 3.9ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 70/80 10.9G 0.7398 0.3749 0.9456 107 640: 100%|██████████| 106/106 [01:01<00:00, 1.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:02<00:00, 2.18it/s]\n", " all 161 861 0.823 0.81 0.835 0.541\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss301_png.rf.79b160619414ca6a470bd5ea8b30ef4a.jpg: 640x640 1 mask_weared_incorrect, 19 with_masks, 3 without_masks, 50.3ms\n", "Speed: 8.7ms preprocess, 50.3ms inference, 6.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss303_png.rf.f00ae35b4058b933e066d1d2a4d88c17.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss258_png.rf.fc7b4f2f14e1d199dce55985695d1120.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss304_png.rf.9df48cf93de57fa41d0a2b59de78a62c.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss224_png.rf.4539ed1dc0a709e4e01077ecf7bc2b22.jpg: 640x640 2 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss20_png.rf.ca394d629ffaba1fdb13e432a79a5eb9.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.6ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss109_png.rf.3c26f7537566830dffb39c47f71e574e.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss114_png.rf.c087c8382ac2542ac89314fa0bbeb4f6.jpg: 640x640 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.4ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss127_png.rf.1baab62c26cbf4478f2a8d99e1cf68de.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss146_png.rf.ec0da30308aa466d39bae79b0cc0e2bf.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss152_png.rf.c66bb39b29efc7503239890f834100dc.jpg: 640x640 7 with_masks, 40.8ms\n", "Speed: 7.7ms preprocess, 40.8ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss154_png.rf.7512e06f4e0bd3a2185ec1867603cc8a.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss168_png.rf.3b19cb741e672eef23c3f091fd204d52.jpg: 640x640 3 with_masks, 3 without_masks, 37.3ms\n", "Speed: 1.9ms preprocess, 37.3ms inference, 3.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss217_png.rf.c4e305ead91154374bba4fc48e0e3b99.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss169_png.rf.49a3d702f1cd1ce83aa6cd01599e3644.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss174_png.rf.ba1760e663e246482b26e587332650b0.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 6.1ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss178_png.rf.2fd8857c96b9bed1982f78b55798a334.jpg: 640x640 2 with_masks, 1 without_mask, 37.2ms\n", "Speed: 5.1ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss194_png.rf.77ed2eca9fe5235cf2496449dd156996.jpg: 640x640 2 with_masks, 37.3ms\n", "Speed: 2.0ms preprocess, 37.3ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss197_png.rf.cd0c6b120a0fae906bb417f825daf6a1.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss1_png.rf.e41f0052ad0e49cab0887d6e50e5a7eb.jpg: 640x640 7 with_masks, 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss203_png.rf.eba7307a461c6b2098593e82d2cccecc.jpg: 640x640 4 with_masks, 37.9ms\n", "Speed: 1.8ms preprocess, 37.9ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss206_png.rf.68794173883f5ae26e2382a3087aac0b.jpg: 640x640 7 with_masks, 1 without_mask, 37.2ms\n", "Speed: 3.0ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss172_png.rf.13bb93a8bf5266e0d73bab43f62e0376.jpg: 640x640 1 without_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss306_png.rf.52a38aff8eebcfb7d90d0c7cac38fdec.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 2.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss307_png.rf.93b21e5a88a625f2a9284ff6253bd417.jpg: 640x640 2 mask_weared_incorrects, 1 with_mask, 1 without_mask, 37.3ms\n", "Speed: 2.2ms preprocess, 37.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss308_png.rf.61a249cc68e67a9cf66c2393f61080f2.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss402_png.rf.adb70e16aac43aa519466a4364f99311.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss408_png.rf.bb077fd8dd6090c8f22b2dfe4fb0b2dc.jpg: 640x640 8 with_masks, 3 without_masks, 37.3ms\n", "Speed: 2.5ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss409_png.rf.a1da634820d49e7be38ce59f5f5887bb.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss410_png.rf.eaad04d3f7e7468f6a0a3d017306d6da.jpg: 640x640 1 mask_weared_incorrect, 20 with_masks, 3 without_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss418_png.rf.432d10d262677cb69e95be55ca0c9125.jpg: 640x640 2 with_masks, 1 without_mask, 37.3ms\n", "Speed: 1.8ms preprocess, 37.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss421_png.rf.7ecb66f6ba285fd631717a3635a7dd71.jpg: 640x640 6 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "Closing dataloader mosaic\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", "os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", "os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 71/80 10.9G 0.714 0.3269 0.9362 44 640: 100%|██████████| 106/106 [01:03<00:00, 1.66it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.64it/s]\n", " all 161 861 0.9 0.771 0.837 0.546\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss425_png.rf.b69c6da9a6c99fd8edfdad09f10582d2.jpg: 640x640 1 with_mask, 38.6ms\n", "Speed: 2.0ms preprocess, 38.6ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss400_png.rf.63c84ce5e3e0391c9509f77d2244755c.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 2.7ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss429_png.rf.0f9bc0b4f072650f40e985eefdce87df.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 3.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss438_png.rf.85978160d8cedb7d56a26e0d06e41f87.jpg: 640x640 4 with_masks, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss440_png.rf.641564d43589f6344bacc5d05d51da53.jpg: 640x640 1 mask_weared_incorrect, 9 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss44_png.rf.b6697a646548922305672e657697750b.jpg: 640x640 4 with_masks, 1 without_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss450_png.rf.8f5e0ff6c7228f1180f985685beb20d5.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss457_png.rf.60b3bf773c197a83826aae38a0cf2387.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss459_png.rf.73bd4ff56e948804a4c7d5cc9e2f98ef.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.2ms\n", "Speed: 2.5ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss45_png.rf.3b160c8afb75253926e1abf7b4972504.jpg: 640x640 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss431_png.rf.c5e66fbd5f544edca4f20973ce5ecf08.jpg: 640x640 1 mask_weared_incorrect, 17 with_masks, 37.1ms\n", "Speed: 1.9ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss395_png.rf.d0fd9e7ac741d7df48a86b7f291e9b49.jpg: 640x640 1 with_mask, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss389_png.rf.11956fb49c814dab304f0006b9075f71.jpg: 640x640 9 with_masks, 2 without_masks, 37.2ms\n", "Speed: 1.6ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss388_png.rf.4847bd339895b2496b21a16876aca440.jpg: 640x640 1 mask_weared_incorrect, 10 with_masks, 8 without_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss311_png.rf.8d4e3cc30ab76d6699d7f220a26286dd.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 1.5ms preprocess, 37.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss313_png.rf.0d2ede745cca1bbc73883747763be4cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss315_png.rf.bdcb0e2cde8b888d72849bbf232bc644.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss31_png.rf.f71dabc8b32a5181ae4a7ec0724d169e.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 2.3ms preprocess, 37.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss321_png.rf.d5ca9ccecbb235c5551003b177cd1d46.jpg: 640x640 1 mask_weared_incorrect, 1 with_mask, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss330_png.rf.ca2fe4eca45ae4b2bc6bb9fde6d39dff.jpg: 640x640 4 with_masks, 37.1ms\n", "Speed: 1.8ms preprocess, 37.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss338_png.rf.669c284dd81181d71654743a3ca9aeb3.jpg: 640x640 5 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss339_png.rf.d26efdd756cada62599cd227994bbf56.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.0ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss343_png.rf.1c5c7bbcb828a1cf9d4d2584972083cb.jpg: 640x640 1 without_mask, 37.1ms\n", "Speed: 2.1ms preprocess, 37.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss351_png.rf.15436d1eb7080d7bae2e79d554a4d3cb.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 2.1ms preprocess, 37.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss364_png.rf.74e470c60f166ba4ec1a268b153fa240.jpg: 640x640 3 with_masks, 37.2ms\n", "Speed: 5.8ms preprocess, 37.2ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss366_png.rf.433ea8f6b4fcab0d951b52116611c1be.jpg: 640x640 2 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss368_png.rf.1d14fe4224d1b152c5e272d889fe3d45.jpg: 640x640 9 with_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss374_png.rf.b51c420d86fc3a474ed557b5a230b51e.jpg: 640x640 4 with_masks, 1 without_mask, 37.1ms\n", "Speed: 1.7ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss376_png.rf.ca418b2ffccc242892a1ab14657e8349.jpg: 640x640 8 with_masks, 37.1ms\n", "Speed: 2.3ms preprocess, 37.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss37_png.rf.60ce2ff44ae089a01d8f07ff2e0f00ad.jpg: 640x640 1 with_mask, 37.2ms\n", "Speed: 1.9ms preprocess, 37.2ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss387_png.rf.6d027b3075e33a4414cc245ec7435fcc.jpg: 640x640 1 mask_weared_incorrect, 3 with_masks, 37.1ms\n", "Speed: 2.0ms preprocess, 37.1ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss464_png.rf.b7d07a0f6aabc271e6bfbe039246786b.jpg: 640x640 7 with_masks, 37.2ms\n", "Speed: 1.8ms preprocess, 37.2ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 72/80 11G 0.6901 0.3235 0.9268 48 640: 100%|██████████| 106/106 [01:02<00:00, 1.71it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.68it/s]\n", " all 161 861 0.87 0.77 0.813 0.529\n", "\n", "image 1/1 /content/Face-Mask-Detection-1/valid/images/maksssksksss90_png.rf.bb3401c96e9aba7db607a9a5ac8d8f51.jpg: 640x640 11 with_masks, 47.8ms\n", "Speed: 1.8ms preprocess, 47.8ms inference, 6.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 73/80 11G 0.6748 0.318 0.9196 167 640: 100%|██████████| 106/106 [00:59<00:00, 1.78it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 6/6 [00:03<00:00, 1.90it/s]\n", " all 161 861 0.865 0.776 0.83 0.547\n" ] } ], "source": [ "# Initialize YOLO Model\n", "model = YOLO(\"yolov8m.pt\")\n", "\n", "# Add Weights & Biases callback for Ultralytics\n", "add_wandb_callback(model, enable_model_checkpointing=True)\n", "\n", "# Train/fine-tune model\n", "model.train(project=\"verihubs-tech-assessment\", data='/content/Face-Mask-Detection-1/data.yaml', epochs=80, device=[0])\n", "model.val()\n", "\n", "# Finish the W&B run\n", "wandb.finish()" ] }, { "cell_type": "markdown", "metadata": { "id": "93eWzFxhw5Ot" }, "source": [ "# Model Evaluation" ] }, { "cell_type": "markdown", "source": [ "### Evaluate on test set" ], "metadata": { "id": "bh2FD2tj38wQ" } }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "_6Hm3i4Pw5Ot" }, "outputs": [], "source": [ "model = YOLO('best.pt', task='detect')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "eXetfgvw0gpM", "outputId": "08a10b3d-fd98-46fb-ebab-67ea7c4cf68c" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.3.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n", "100%|██████████| 755k/755k [00:00<00:00, 62.4MB/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/Face-Mask-Detection-1/valid/labels... 161 images, 0 backgrounds, 0 corrupt: 100%|██████████| 161/161 [00:00<00:00, 1699.32it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/Face-Mask-Detection-1/valid/labels.cache\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 11/11 [00:11<00:00, 1.06s/it]\n", " all 161 861 0.9 0.772 0.837 0.547\n", " mask_weared_incorrect 161 28 0.891 0.643 0.735 0.486\n", " with_mask 161 720 0.935 0.902 0.944 0.648\n", " without_mask 161 113 0.876 0.77 0.831 0.508\n", "Speed: 5.0ms preprocess, 22.5ms inference, 0.0ms loss, 7.2ms postprocess per image\n", "Results saved to \u001b[1mruns/detect/val2\u001b[0m\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "ultralytics.utils.metrics.DetMetrics object with attributes:\n", "\n", "ap_class_index: array([0, 1, 2])\n", "box: ultralytics.utils.metrics.Metric object\n", "confusion_matrix: \n", "fitness: 0.5763262590985345\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", "maps: array([ 0.4858, 0.6481, 0.50819])\n", "names: {0: 'mask_weared_incorrect', 1: 'with_mask', 2: 'without_mask'}\n", "plot: True\n", "results_dict: {'metrics/precision(B)': 0.9004291228691308, 'metrics/recall(B)': 0.7716073384676143, 'metrics/mAP50(B)': 0.8370097832892117, 'metrics/mAP50-95(B)': 0.5473614230773481, 'fitness': 0.5763262590985345}\n", "save_dir: PosixPath('runs/detect/val2')\n", "speed: {'preprocess': 5.027679182727885, 'inference': 22.499906350366818, 'loss': 0.001861441949879901, 'postprocess': 7.183861288224689}" ] }, "metadata": {}, "execution_count": 11 } ], "source": [ "model.val()" ] }, { "cell_type": "markdown", "source": [ "When I tested the model on test set, I got 83.7% mAP@50 and 54.7% map@50-95 on all classess.\n", "\n", "\n", "See the inference results here https://wandb.ai/anakbangkit/verihubs-tech-assessment/reports/AI-Engineer-Study-Case-Report-Manfred-Michael--Vmlldzo4MDYxNjkx" ], "metadata": { "id": "N9nch27T3Tox" } }, { "cell_type": "markdown", "source": [ "> **Note**: From the wandb report above, we could see that the incorrectly weared mask is the hardest to detect." ], "metadata": { "id": "Mj6A1Fbc_w-M" } }, { "cell_type": "markdown", "source": [ "### WandB Tracking Results" ], "metadata": { "id": "DkmorRd54C86" } }, { "cell_type": "markdown", "source": [ "You can see the full report here - https://wandb.ai/anakbangkit/verihubs-tech-assessment/reports/AI-Engineer-Study-Case-Report-Manfred-Michael--Vmlldzo4MDYxNjkx" ], "metadata": { "id": "SsH3PZdp7FAb" } }, { "cell_type": "markdown", "source": [ "#### Confusion Matrix" ], "metadata": { "id": "b3H7GOmG4vpS" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "iiEppGVg_b-T" } }, { "cell_type": "markdown", "source": [ "#### mean Average Precision" ], "metadata": { "id": "gqhAfDv45U72" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "G-rjoAqg5LPW" } }, { "cell_type": "markdown", "source": [ "# Calculate Inference Speed" ], "metadata": { "id": "q-H53qT45ryn" } }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 310, "referenced_widgets": [ "99f163adc5d743839dd82733209496c3", "8bf3e79c28314bfe92b1462ca08d65fb", "8edf70b4aa984bc09da31c8be7b9405b", "6d09eff9fa5546b592186984c5bddd86", "3b96f0b655104800bf2ef4504660e9fb", "3d8af422cf854c08b9cabcdc10f63f32", "1af10357ef5d4a6dac6d67277ff093b5", "2733a301ee7e448684399bdcb81eddc2" ] }, "id": "9WGkhvfXSijI", "outputId": "dfce0c30-2e08-4d82-9c83-4c6b6930ee1d" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Finishing last run (ID:uvj29u8v) before initializing another..." ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Waiting for W&B process to finish... (success)." ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "VBox(children=(Label(value='0.001 MB of 0.013 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=0.094515…" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "99f163adc5d743839dd82733209496c3" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run visionary-eon-7 at: https://wandb.ai/anakbangkit/verihubs-tech-assessment/runs/uvj29u8v
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Find logs at: ./wandb/run-20240522_235650-uvj29u8v/logs" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Successfully finished last run (ID:uvj29u8v). Initializing new run:
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "wandb version 0.17.0 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Tracking run with wandb version 0.15.12" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Run data is saved locally in /content/wandb/run-20240523_000329-47wmvauk" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Syncing run fanciful-snowball-8 to Weights & Biases (docs)
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View project at https://wandb.ai/anakbangkit/verihubs-tech-assessment" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run at https://wandb.ai/anakbangkit/verihubs-tech-assessment/runs/47wmvauk" ] }, "metadata": {} }, { "output_type": "execute_result", "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "execution_count": 24 } ], "source": [ "wandb.init(project=\"verihubs-tech-assessment\", job_type=\"evaluation\")" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "Y8iCmJYpw5Ou" }, "outputs": [], "source": [ "model_best = YOLO('/content/best.pt', task='detect')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5AIYedpzYy6R", "outputId": "d38f2424-7d55-4cd9-b4e1-1b9b5f9aa57a" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "\n", "0: 640x640 2 with_masks, 1: 640x640 3 with_masks, 2: 640x640 3 with_masks, 1 without_mask, 3: 640x640 1 mask_weared_incorrect, 4: 640x640 5 mask_weared_incorrects, 2 with_masks, 1 without_mask, 157.9ms\n", "Speed: 2.8ms preprocess, 31.6ms inference, 1.4ms postprocess per image at shape (1, 3, 640, 640)\n" ] } ], "source": [ "import glob\n", "test_img_paths = glob.glob(\"/content/test-images/*\")\n", "\n", "imgs = [Image.open(path) for path in test_img_paths]\n", "\n", "results = model_best(imgs)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "20yvojD1Y8Qu", "outputId": "beebafab-647b-44f9-8e1f-b07ec4a8068d" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content/test-images/106757648-1603404475911-gettyimages-1281710356-nng_6210_2020102252211420.jpeg\n", "{'preprocess': 2.7736663818359375, 'inference': 31.577253341674805, 'postprocess': 1.3605594635009766}\n", "/content/test-images/download (1).jpg\n", "{'preprocess': 2.7736663818359375, 'inference': 31.577253341674805, 'postprocess': 1.3605594635009766}\n", "/content/test-images/Women-wearing-facemasks-while-walking-outdoors-Milan-Italy-February-2020-coronavirus-COVID-19.webp\n", "{'preprocess': 2.7736663818359375, 'inference': 31.577253341674805, 'postprocess': 1.3605594635009766}\n", "/content/test-images/download (2).jpg\n", "{'preprocess': 2.7736663818359375, 'inference': 31.577253341674805, 'postprocess': 1.3605594635009766}\n", "/content/test-images/images (5).jpg\n", "{'preprocess': 2.7736663818359375, 'inference': 31.577253341674805, 'postprocess': 1.3605594635009766}\n" ] } ], "source": [ "for result in results:\n", " print(result.path)\n", " print(result.speed)" ] }, { "cell_type": "markdown", "source": [ "Here we get 31ms latency on inference" ], "metadata": { "id": "Gls-sFvR5y0V" } }, { "cell_type": "markdown", "source": [ "# Reduce Inference Speed" ], "metadata": { "id": "73D6BcSl6lEH" } }, { "cell_type": "markdown", "source": [ "\n", "### Quantize the model" ], "metadata": { "id": "XECaJUUh7SFq" } }, { "cell_type": "markdown", "source": [ "In this step, I will export the model with int8 quantization." ], "metadata": { "id": "OCr4aSt66p1N" } }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 264 }, "id": "_Q2VJ0QPZJaA", "outputId": "e91223e7-b1e9-4fbc-bc12-078d5e5a03f2" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.3.0+cu121 CPU (Intel Xeon 2.00GHz)\n", "\n", "\u001b[34m\u001b[1mPyTorch:\u001b[0m starting from '/content/best.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 7, 8400) (296.6 MB)\n", "\n", "\u001b[34m\u001b[1mTorchScript:\u001b[0m starting export with torch 2.3.0+cu121...\n", "\u001b[34m\u001b[1mTorchScript:\u001b[0m export success ✅ 8.3s, saved as '/content/best.torchscript' (99.1 MB)\n", "\n", "Export complete (11.5s)\n", "Results saved to \u001b[1m/content\u001b[0m\n", "Predict: yolo predict task=detect model=/content/best.torchscript imgsz=640 int8 \n", "Validate: yolo val task=detect model=/content/best.torchscript imgsz=640 data=/content/Face-Mask-Detection-1/data.yaml int8 \n", "Visualize: https://netron.app\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "'/content/best.torchscript'" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "string" } }, "metadata": {}, "execution_count": 28 } ], "source": [ "model_best.export(format='torchscript', int8=True)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 307, "referenced_widgets": [ "87507ff80bed4339b98615f17f631f9a", "a709b4b5e31b492f9faee82fac4e5dcb", "21910808f6224ecf98625a62a2546c2a", "58c3b2fffd5e465fb90ef94386c55316", "565aa378b65f4e4d9c741cf49f74cc93", "5cc53119d8e647b082e65550c5eeed76", "0770f30f33b94ec2a1f035a113229c60", "91a7bdb462134402992cb9035fb92ede" ] }, "id": "c-8F6pUjSgMN", "outputId": "5fd253b6-05e5-44d3-ec12-0810a80753bf" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Finishing last run (ID:47wmvauk) before initializing another..." ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Waiting for W&B process to finish... (success)." ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "VBox(children=(Label(value='0.001 MB of 0.001 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "87507ff80bed4339b98615f17f631f9a" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run fanciful-snowball-8 at: https://wandb.ai/anakbangkit/verihubs-tech-assessment/runs/47wmvauk
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Find logs at: ./wandb/run-20240523_000329-47wmvauk/logs" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Successfully finished last run (ID:47wmvauk). Initializing new run:
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "wandb version 0.17.0 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Tracking run with wandb version 0.15.12" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Run data is saved locally in /content/wandb/run-20240523_000806-tv5b30zu" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Syncing run divine-pond-9 to Weights & Biases (docs)
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View project at https://wandb.ai/anakbangkit/verihubs-tech-assessment" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run at https://wandb.ai/anakbangkit/verihubs-tech-assessment/runs/tv5b30zu" ] }, "metadata": {} }, { "output_type": "execute_result", "data": { "text/plain": [ "YOLO()" ] }, "metadata": {}, "execution_count": 29 } ], "source": [ "wandb.init(project=\"verihubs-tech-assessment\", job_type=\"evaluation\")\n", "\n", "model_int8 = YOLO('/content/best.torchscript', task='detect')\n", "add_wandb_callback(model_int8, enable_model_checkpointing=True)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 138, "referenced_widgets": [ "c699954b34a24c50a28c70361badd803", "baee1aa3f5c741e1a531846fd98ac771", "ab714c6388af49ee8da67cddff061443", "d94d1a3b8f4343bea6ff0f19b0bd4443", "96763df4270946caaf2961a07c699c0a", "c504e93947ae4a2d9ecfe2615e0c9cc6", "1c56b744165b4093b5941feb56a73785", "e4bd657fbd7d40bda45409ea8f17c27a", "d1a8603b2d6d462ea3f977fc8ac6e306", "14199fca456249eaadcec5700d1857d3", "c369e26eeb36461a9a06db2ba7658472" ] }, "id": "a7g50M8RaMgG", "outputId": "0f7bf76a-8a7f-4fb4-e3d8-342d0231e1dc" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Loading /content/best.torchscript for TorchScript inference...\n", "\n", "0: 640x640 2 with_masks, 1: 640x640 3 with_masks, 2: 640x640 3 with_masks, 1 without_mask, 3: 640x640 1 mask_weared_incorrect, 4: 640x640 5 mask_weared_incorrects, 2 with_masks, 1 without_mask, 109.6ms\n", "Speed: 2.2ms preprocess, 21.9ms inference, 1.2ms postprocess per image at shape (1, 3, 640, 640)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " 0%| | 0/5 [00:00\n", "fitness: 0.571245528142035\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", "maps: array([ 0.48219, 0.63923, 0.50649])\n", "names: {0: 'mask_weared_incorrect', 1: 'with_mask', 2: 'without_mask'}\n", "plot: True\n", "results_dict: {'metrics/precision(B)': 0.846657158388935, 'metrics/recall(B)': 0.7949851975707888, 'metrics/mAP50(B)': 0.8287328115265163, 'metrics/mAP50-95(B)': 0.5426358299882038, 'fitness': 0.571245528142035}\n", "save_dir: PosixPath('runs/detect/val3')\n", "speed: {'preprocess': 4.6583658419780845, 'inference': 19.83749052012189, 'loss': 0.03296692178856512, 'postprocess': 1.5373052277179977}" ] }, "metadata": {}, "execution_count": 32 } ] }, { "cell_type": "markdown", "source": [ "Now we get 82.9% mAP@50 and 54.4% map@50-95. A very similar performance with only 2/3 of the original inference time!" ], "metadata": { "id": "P-Gf9S7L7mgb" } } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "2146f10769064170acce6e7e8335cebd": { "model_module": "@jupyter-widgets/controls", "model_name": "VBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_be657624c5ea43c199921c4382f7a958", "IPY_MODEL_ae90885359d24008a3fd13e846a22246" ], "layout": "IPY_MODEL_9b71788bd91f46269093c90e8fb71c0c" } }, "be657624c5ea43c199921c4382f7a958": { "model_module": "@jupyter-widgets/controls", "model_name": "LabelModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "LabelModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "LabelView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fd1ba992d244494c972f0f97b775a0a7", "placeholder": "​", "style": "IPY_MODEL_f9879c9d97704b37b8d6c1fff1677d97", "value": "0.001 MB of 0.004 MB uploaded (0.000 MB deduped)\r" } }, "ae90885359d24008a3fd13e846a22246": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_be3b792ad0714dfda173bd1a08979f74", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_86eaffd1aa4c47c0ba920352eb4551a5", "value": 0.32745459331403 } }, "9b71788bd91f46269093c90e8fb71c0c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fd1ba992d244494c972f0f97b775a0a7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f9879c9d97704b37b8d6c1fff1677d97": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "be3b792ad0714dfda173bd1a08979f74": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "86eaffd1aa4c47c0ba920352eb4551a5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "99f163adc5d743839dd82733209496c3": { "model_module": "@jupyter-widgets/controls", "model_name": "VBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_8bf3e79c28314bfe92b1462ca08d65fb", "IPY_MODEL_8edf70b4aa984bc09da31c8be7b9405b" ], "layout": "IPY_MODEL_6d09eff9fa5546b592186984c5bddd86" } }, "8bf3e79c28314bfe92b1462ca08d65fb": { "model_module": "@jupyter-widgets/controls", "model_name": "LabelModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "LabelModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "LabelView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3b96f0b655104800bf2ef4504660e9fb", "placeholder": "​", "style": "IPY_MODEL_3d8af422cf854c08b9cabcdc10f63f32", "value": "0.001 MB of 0.013 MB uploaded (0.000 MB deduped)\r" } }, "8edf70b4aa984bc09da31c8be7b9405b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1af10357ef5d4a6dac6d67277ff093b5", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2733a301ee7e448684399bdcb81eddc2", "value": 0.09451566411287264 } }, "6d09eff9fa5546b592186984c5bddd86": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3b96f0b655104800bf2ef4504660e9fb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3d8af422cf854c08b9cabcdc10f63f32": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1af10357ef5d4a6dac6d67277ff093b5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2733a301ee7e448684399bdcb81eddc2": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "87507ff80bed4339b98615f17f631f9a": { "model_module": "@jupyter-widgets/controls", "model_name": "VBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_a709b4b5e31b492f9faee82fac4e5dcb", "IPY_MODEL_21910808f6224ecf98625a62a2546c2a" ], "layout": "IPY_MODEL_58c3b2fffd5e465fb90ef94386c55316" } }, "a709b4b5e31b492f9faee82fac4e5dcb": { "model_module": "@jupyter-widgets/controls", "model_name": "LabelModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "LabelModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "LabelView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_565aa378b65f4e4d9c741cf49f74cc93", "placeholder": "​", "style": "IPY_MODEL_5cc53119d8e647b082e65550c5eeed76", "value": "0.001 MB of 0.013 MB uploaded (0.000 MB deduped)\r" } }, "21910808f6224ecf98625a62a2546c2a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0770f30f33b94ec2a1f035a113229c60", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_91a7bdb462134402992cb9035fb92ede", "value": 0.09375470278404816 } }, "58c3b2fffd5e465fb90ef94386c55316": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "565aa378b65f4e4d9c741cf49f74cc93": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5cc53119d8e647b082e65550c5eeed76": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0770f30f33b94ec2a1f035a113229c60": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "91a7bdb462134402992cb9035fb92ede": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c699954b34a24c50a28c70361badd803": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_baee1aa3f5c741e1a531846fd98ac771", "IPY_MODEL_ab714c6388af49ee8da67cddff061443", "IPY_MODEL_d94d1a3b8f4343bea6ff0f19b0bd4443" ], "layout": "IPY_MODEL_96763df4270946caaf2961a07c699c0a" } }, "baee1aa3f5c741e1a531846fd98ac771": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c504e93947ae4a2d9ecfe2615e0c9cc6", "placeholder": "​", "style": "IPY_MODEL_1c56b744165b4093b5941feb56a73785", "value": "100%" } }, "ab714c6388af49ee8da67cddff061443": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e4bd657fbd7d40bda45409ea8f17c27a", "max": 5, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d1a8603b2d6d462ea3f977fc8ac6e306", "value": 5 } }, "d94d1a3b8f4343bea6ff0f19b0bd4443": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_14199fca456249eaadcec5700d1857d3", "placeholder": "​", "style": "IPY_MODEL_c369e26eeb36461a9a06db2ba7658472", "value": " 5/5 [00:03<00:00,  1.26it/s]" } }, "96763df4270946caaf2961a07c699c0a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c504e93947ae4a2d9ecfe2615e0c9cc6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1c56b744165b4093b5941feb56a73785": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e4bd657fbd7d40bda45409ea8f17c27a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d1a8603b2d6d462ea3f977fc8ac6e306": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "14199fca456249eaadcec5700d1857d3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c369e26eeb36461a9a06db2ba7658472": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "nbformat": 4, "nbformat_minor": 0 }