Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import tensorflow as tf
|
5 |
+
import tensorflow_probability as tfp
|
6 |
+
from math import sqrt
|
7 |
+
from scipy import stats
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
tfd = tfp.distributions
|
11 |
+
tfl = tfp.layers
|
12 |
+
|
13 |
+
st.title("Probability Distributions")
|
14 |
+
add_selectbox = st.sidebar.selectbox(
|
15 |
+
'Choose an Option',
|
16 |
+
('Discrete Univariate', 'Continuous Univariate')
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# st.title("1 dimensional normal distribution")
|
22 |
+
|
23 |
+
def Sum(p1val,p2val,zval):
|
24 |
+
l = int(max(max(zval), len(zval)))
|
25 |
+
l=l*2
|
26 |
+
s=[0]*l
|
27 |
+
for i in range(len(zval)):
|
28 |
+
for j in range(len(zval)):
|
29 |
+
s[int(zval[i]+zval[j])]+=p1val[i]*p2val[j]
|
30 |
+
return s
|
31 |
+
def Product(p1val,p2val,zval):
|
32 |
+
l=int(max(max(zval),len(zval)))
|
33 |
+
l=l**2
|
34 |
+
s=[0]*l
|
35 |
+
for i in range(len(zval)):
|
36 |
+
for j in range(len(zval)):
|
37 |
+
s[int(zval[i]*zval[j])]+=p1val[i]*p2val[j]
|
38 |
+
return s
|
39 |
+
|
40 |
+
def Normal():
|
41 |
+
st.header("Normal distribution")
|
42 |
+
p = tfd.Normal(2, 1)
|
43 |
+
mean = st.slider('Mean', -5, 5, 0)
|
44 |
+
std = st.slider('Scale', 0, 5, 1)
|
45 |
+
z = f"""\\begin{{array}}{{cc}}
|
46 |
+
\mu &= {mean} \\\\
|
47 |
+
\sigma &= {std}
|
48 |
+
\\end{{array}}
|
49 |
+
"""
|
50 |
+
st.latex(z)
|
51 |
+
st1 = r'''
|
52 |
+
mean= \[\mu\]
|
53 |
+
|
54 |
+
Variance = \[ \sigma ^2\]
|
55 |
+
|
56 |
+
Entropy = \[ \frac{1}{2}\log (2 \pi \sigma ^2) + \frac{1}{2} \]
|
57 |
+
'''
|
58 |
+
|
59 |
+
st.latex(st1)
|
60 |
+
q=tfd.Normal(mean,std)
|
61 |
+
z_values = tf.linspace(-5, 5, 200)
|
62 |
+
z_values = tf.cast(z_values, tf.float32)
|
63 |
+
prob_values_p = p.prob(z_values)
|
64 |
+
prob_values_q = q.prob(z_values)
|
65 |
+
|
66 |
+
fig, ax = plt.subplots()
|
67 |
+
ax.plot(z_values, prob_values_p, label=r'Distribution with unknown parameter', linestyle='--', lw=5, alpha=0.5)
|
68 |
+
ax.plot(z_values, prob_values_q, label=r'Distribution with given parameters')
|
69 |
+
|
70 |
+
ax.set_xlabel("x")
|
71 |
+
ax.set_ylabel("PDF(x)")
|
72 |
+
ax.legend()
|
73 |
+
ax.set_ylim((0, 1))
|
74 |
+
|
75 |
+
st.pyplot(fig)
|
76 |
+
kl = tfd.kl_divergence(q, p)
|
77 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
78 |
+
|
79 |
+
st.subheader("Sum of two Normal Distributions")
|
80 |
+
z_values1 = tf.linspace(-10, 10, 21)
|
81 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
82 |
+
|
83 |
+
mean1 = st.slider('Mean1', -5, 5, 0)
|
84 |
+
std1 = st.slider('Std1', 0, 5, 1)
|
85 |
+
mean2 = st.slider('Mean2', -5, 5, 0)
|
86 |
+
std2 = st.slider('Std2', 0, 5, 1)
|
87 |
+
q1=tfd.Normal(mean1,std1)
|
88 |
+
q2=tfd.Normal(mean2,std2)
|
89 |
+
prob_values_q1 = list(q1.prob(z_values1))
|
90 |
+
prob_values_q2 = list(q2.prob(z_values1))
|
91 |
+
|
92 |
+
fig2, (ax2,ax3) = plt.subplots(1,2)
|
93 |
+
ax2.plot(z_values1, prob_values_q1, label=r'Normal(mean1,std1)')
|
94 |
+
ax3.plot(z_values1, prob_values_q2, label=r'Normal(mean2,std2)')
|
95 |
+
|
96 |
+
ax2.set_xlabel("x")
|
97 |
+
ax2.set_ylabel("PDF(x)")
|
98 |
+
ax2.set_title("Normal(mean1,std1)")
|
99 |
+
ax2.set_ylim((0, 1))
|
100 |
+
|
101 |
+
ax3.set_xlabel("x")
|
102 |
+
ax3.set_ylabel("PDF(x)")
|
103 |
+
ax3.set_title("Normal(mean2,std2)")
|
104 |
+
ax3.set_ylim((0, 1))
|
105 |
+
|
106 |
+
st.pyplot(fig2)
|
107 |
+
|
108 |
+
prob_values_sum = Sum(prob_values_q1, prob_values_q2, z_values1)
|
109 |
+
q3 = tfd.Normal(mean1+mean2, sqrt(((std1)**2 + (std2)**2)))
|
110 |
+
prob_values_q3 = q3.prob(range(len(prob_values_sum)))
|
111 |
+
|
112 |
+
fig3, ax4 = plt.subplots()
|
113 |
+
ax4.plot(range(len(prob_values_sum)), prob_values_sum, label=r'Normal(mean1,std1)+Normal(mean2,std2)', linestyle='--', lw=5, alpha=0.5)
|
114 |
+
ax4.plot(range(len(prob_values_sum)), prob_values_q3, label=r'Normal(mean1+mean2, sqrt((std1^2 + std2^2)')
|
115 |
+
|
116 |
+
ax4.set_xlabel("x")
|
117 |
+
ax4.set_ylabel("PDF(x)")
|
118 |
+
ax4.legend()
|
119 |
+
ax4.set_ylim((0, 1))
|
120 |
+
|
121 |
+
st.pyplot(fig3)
|
122 |
+
st.markdown("Sum of two Normal distributions yields a Normal distribution")
|
123 |
+
|
124 |
+
st.subheader("Relationship between Poisson and Normal Distribution")
|
125 |
+
rate3 = st.slider('lambda1', 100, 500, 250, 50)
|
126 |
+
q4 = tfd.Poisson(rate=rate3)
|
127 |
+
z_values1 = tf.linspace(0, 600, 601)
|
128 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
129 |
+
prob_values_q4 = list(q4.prob(z_values1))
|
130 |
+
q5 = tfd.Normal(rate3, sqrt(rate3))
|
131 |
+
prob_values_q5 = list(q5.prob(z_values1))
|
132 |
+
|
133 |
+
fig4, ax5 = plt.subplots()
|
134 |
+
ax5.stem(z_values1, prob_values_q4, label=r'Poisson(lambda1)]', linefmt='r', markerfmt='ro')
|
135 |
+
ax5.plot(z_values1, prob_values_q5, label=r'Normal(lamda1,sqrt(lambda1)', lw=3)
|
136 |
+
ax5.set_xlabel("x")
|
137 |
+
ax5.set_ylabel("PDF(x)")
|
138 |
+
ax5.legend()
|
139 |
+
ax5.set_ylim((0, 0.1))
|
140 |
+
st.pyplot(fig4)
|
141 |
+
st.markdown("For large values of lambda, Poisson(lambda) becomes approximately a normal distribution having mean= lambda and variance= lambda")
|
142 |
+
|
143 |
+
def Exponential():
|
144 |
+
st.subheader("Exponential distribution")
|
145 |
+
p = tfd.Exponential(2)
|
146 |
+
rate = st.slider('Lambda', 1, 5, 1)
|
147 |
+
cdf = r'''
|
148 |
+
cdf = $\int_a^b f(x)dx$
|
149 |
+
'''
|
150 |
+
|
151 |
+
st.latex(cdf)
|
152 |
+
q = tfd.Exponential(rate)
|
153 |
+
z_values = tf.linspace(-5, 5, 200)
|
154 |
+
z_values = tf.cast(z_values, tf.float32)
|
155 |
+
prob_values_p = p.prob(z_values)
|
156 |
+
prob_values_q = q.prob(z_values)
|
157 |
+
|
158 |
+
fig, ax = plt.subplots()
|
159 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
160 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
161 |
+
|
162 |
+
ax.set_xlabel("x")
|
163 |
+
ax.set_ylabel("PDF(x)")
|
164 |
+
ax.legend()
|
165 |
+
ax.set_ylim((0, 1))
|
166 |
+
|
167 |
+
st.pyplot(fig)
|
168 |
+
kl = tfd.kl_divergence(q, p)
|
169 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
170 |
+
|
171 |
+
st.subheader("Relationship between Gamma and Exponential Distribution")
|
172 |
+
alpha1 = 1
|
173 |
+
st.write("alpha1=1")
|
174 |
+
beta1 = st.slider('beta1', 0.0, 10.0, 5.0, 0.5)
|
175 |
+
q2 = tfd.Gamma(concentration=alpha1, rate=beta1)
|
176 |
+
prob_values_q2 = list(q2.prob(z_values))
|
177 |
+
q3 = tfd.Exponential(beta1)
|
178 |
+
prob_values_q3 = list(q3.prob(z_values))
|
179 |
+
fig3, ax3 = plt.subplots()
|
180 |
+
ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Gamma(1,beta)')
|
181 |
+
ax3.plot(z_values, prob_values_q3, label=r'Exponential(beta)')
|
182 |
+
|
183 |
+
ax3.set_xlabel("x")
|
184 |
+
ax3.set_ylabel("PDF(x)")
|
185 |
+
ax3.legend()
|
186 |
+
# ax3.set_ylim((0, 1))
|
187 |
+
st.pyplot(fig3)
|
188 |
+
|
189 |
+
|
190 |
+
def Uniform():
|
191 |
+
st.subheader("Uniform distribution")
|
192 |
+
p = tfd.Uniform(0,1)
|
193 |
+
low = st.slider('low', 0, 5, 1)
|
194 |
+
high = st.slider('high', 1, 6, 1)
|
195 |
+
|
196 |
+
cdf = r'''
|
197 |
+
cdf = $\int_a^b f(x)dx$
|
198 |
+
'''
|
199 |
+
|
200 |
+
st.latex(cdf)
|
201 |
+
q = tfd.Uniform(low,high)
|
202 |
+
z_values = tf.linspace(-5, 5, 200)
|
203 |
+
z_values = tf.cast(z_values, tf.float32)
|
204 |
+
prob_values_p = p.prob(z_values)
|
205 |
+
prob_values_q = q.prob(z_values)
|
206 |
+
|
207 |
+
fig, ax = plt.subplots()
|
208 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
209 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
210 |
+
|
211 |
+
ax.set_xlabel("x")
|
212 |
+
ax.set_ylabel("PDF(x)")
|
213 |
+
ax.legend()
|
214 |
+
ax.set_ylim((0, 1))
|
215 |
+
|
216 |
+
st.pyplot(fig)
|
217 |
+
kl = tfd.kl_divergence(q, p)
|
218 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
219 |
+
st.subheader("Relationship between Beta Distribution and Uniform Distribution")
|
220 |
+
|
221 |
+
st.write("beta = alpha= 1")
|
222 |
+
q4 = tfd.Beta(1, 1)
|
223 |
+
q5 = tfd.Uniform(0, 1)
|
224 |
+
z_values1 = tf.linspace(0, 1, 200)
|
225 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
226 |
+
prob_values_q4 = list(q4.prob(z_values1))
|
227 |
+
prob_values_q5 = list(q5.prob(z_values1))
|
228 |
+
|
229 |
+
fig3, ax3 = plt.subplots()
|
230 |
+
ax3.plot(z_values1, prob_values_q4, label=r'Beta(1,1)', linestyle='--', lw=3)
|
231 |
+
ax3.plot(z_values1, prob_values_q5, label=r'Uniform(0,1)')
|
232 |
+
|
233 |
+
ax3.set_xlabel("x")
|
234 |
+
ax3.set_ylabel("PDF(x)")
|
235 |
+
ax3.legend()
|
236 |
+
# ax3.set_ylim((0, 1))
|
237 |
+
|
238 |
+
st.pyplot(fig3)
|
239 |
+
|
240 |
+
|
241 |
+
def Cauchy():
|
242 |
+
st.subheader("Cauchy distribution")
|
243 |
+
p = tfd.Cauchy(0, 0.5)
|
244 |
+
loc = st.slider('location', 0.0, 5.0, 1.0, 0.5)
|
245 |
+
sc = st.slider('scale', 0.0, 5.0, 1.0, 0.5)
|
246 |
+
|
247 |
+
cdf = r'''
|
248 |
+
cdf = $\int_a^b f(x)dx$
|
249 |
+
'''
|
250 |
+
|
251 |
+
st.latex(cdf)
|
252 |
+
q = tfd.Cauchy(loc, sc)
|
253 |
+
z_values = tf.linspace(-5, 5, 200)
|
254 |
+
z_values = tf.cast(z_values, tf.float32)
|
255 |
+
prob_values_p = p.prob(z_values)
|
256 |
+
prob_values_q = q.prob(z_values)
|
257 |
+
|
258 |
+
fig, ax = plt.subplots()
|
259 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
260 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
261 |
+
|
262 |
+
ax.set_xlabel("x")
|
263 |
+
ax.set_ylabel("PDF(x)")
|
264 |
+
ax.legend()
|
265 |
+
ax.set_ylim((0, 1))
|
266 |
+
|
267 |
+
st.pyplot(fig)
|
268 |
+
kl = tfd.kl_divergence(q, p)
|
269 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
270 |
+
|
271 |
+
st.subheader("Relationship between Cauchy and StudentT Distribution")
|
272 |
+
q2 = tfd.Cauchy(0,1)
|
273 |
+
q3 = tfd.StudentT(1,0,1)
|
274 |
+
prob_values_q2 = list(q2.prob(z_values))
|
275 |
+
prob_values_q3 = list(q3.prob(z_values))
|
276 |
+
|
277 |
+
fig2, ax2 = plt.subplots()
|
278 |
+
ax2.plot(z_values, prob_values_q2, label=r'Cauchy(0,1)', linestyle='--', lw=3)
|
279 |
+
ax2.plot(z_values, prob_values_q3, label=r'StudentT(1,0,1)')
|
280 |
+
|
281 |
+
ax2.set_xlabel("x")
|
282 |
+
ax2.set_ylabel("PDF(x)")
|
283 |
+
ax2.legend()
|
284 |
+
ax2.set_ylim((0, 1))
|
285 |
+
|
286 |
+
st.pyplot(fig2)
|
287 |
+
|
288 |
+
|
289 |
+
def Chi():
|
290 |
+
st.subheader("Chi distribution")
|
291 |
+
p = tfd.Chi(3)
|
292 |
+
d = st.slider('dof', 0.0, 5.0, 1.0, 0.5)
|
293 |
+
|
294 |
+
cdf = r'''
|
295 |
+
cdf = $\int_a^b f(x)dx$
|
296 |
+
'''
|
297 |
+
|
298 |
+
st.latex(cdf)
|
299 |
+
q = tfd.Chi(d)
|
300 |
+
z_values = tf.linspace(-5, 5, 200)
|
301 |
+
z_values = tf.cast(z_values, tf.float32)
|
302 |
+
prob_values_p = p.prob(z_values)
|
303 |
+
prob_values_q = q.prob(z_values)
|
304 |
+
|
305 |
+
fig, ax = plt.subplots()
|
306 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
307 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
308 |
+
|
309 |
+
ax.set_xlabel("x")
|
310 |
+
ax.set_ylabel("PDF(x)")
|
311 |
+
ax.legend()
|
312 |
+
ax.set_ylim((0, 1))
|
313 |
+
|
314 |
+
st.pyplot(fig)
|
315 |
+
kl = tfd.kl_divergence(q, p)
|
316 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
317 |
+
|
318 |
+
#st.subheader("Transformation of Chi Distribution")
|
319 |
+
#d2 = st.slider('dof2', 0, 5, 1, 1)
|
320 |
+
#p1 = tfd.Chi(d2)
|
321 |
+
#prob_values_new = list(p1.prob(z_values))
|
322 |
+
#z_values2 = np.zeros(len(z_values))
|
323 |
+
#for i in range(len(z_values2)):
|
324 |
+
# z_values2[i] = z_values[i]**2
|
325 |
+
|
326 |
+
#q1 = tfd.Chi2(d2)
|
327 |
+
#new = list(q1.prob(z_values))
|
328 |
+
# fig2, ax2 = plt.subplots()
|
329 |
+
# ax2.plot(z_values, prob_values_new, label=r'X->Chi(d)', lw=3)
|
330 |
+
# ax2.plot(z_values2, prob_values_new, label=r'X transformed to X^2', lw=2)
|
331 |
+
# ax2.plot(z_values2, new, label=r'Chi2(d)', linestyle='--', lw=2)
|
332 |
+
|
333 |
+
#ax2.set_xlabel("x")
|
334 |
+
#ax2.set_ylabel("PDF(x)")
|
335 |
+
#ax2.legend()
|
336 |
+
#st.pyplot(fig2)
|
337 |
+
|
338 |
+
def Chi_squared():
|
339 |
+
st.subheader("Chi-squared distribution")
|
340 |
+
p = tfd.Chi2(4)
|
341 |
+
dof = st.slider('dof', 0.0, 10.0, 2.0,0.5)
|
342 |
+
|
343 |
+
cdf = r'''
|
344 |
+
cdf = $\int_a^b f(x)dx$
|
345 |
+
'''
|
346 |
+
|
347 |
+
st.latex(cdf)
|
348 |
+
q = tfd.Chi2(dof)
|
349 |
+
z_values = tf.linspace(0, 10, 200)
|
350 |
+
z_values = tf.cast(z_values, tf.float32)
|
351 |
+
prob_values_p = p.prob(z_values)
|
352 |
+
prob_values_q = q.prob(z_values)
|
353 |
+
|
354 |
+
fig, ax = plt.subplots()
|
355 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
356 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
357 |
+
|
358 |
+
ax.set_xlabel("x")
|
359 |
+
ax.set_ylabel("PDF(x)")
|
360 |
+
ax.legend()
|
361 |
+
ax.set_ylim((0, 1))
|
362 |
+
|
363 |
+
st.pyplot(fig)
|
364 |
+
kl = tfd.kl_divergence(q, p)
|
365 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
366 |
+
|
367 |
+
st.subheader("Relationship between Chi-Squared and Exponential Distribution")
|
368 |
+
q2 =tfd.Chi2(2)
|
369 |
+
q3 = tfd.Exponential(0.5)
|
370 |
+
prob_values_q2 = list(q2.prob(z_values))
|
371 |
+
prob_values_q3 = list(q3.prob(z_values))
|
372 |
+
|
373 |
+
fig2, ax2 = plt.subplots()
|
374 |
+
ax2.plot(z_values, prob_values_q2, label=r'Chi-Squared(2)', linestyle='--', lw=3)
|
375 |
+
ax2.plot(z_values, prob_values_q3, label=r'Exponential(0.5)')
|
376 |
+
|
377 |
+
ax2.set_xlabel("x")
|
378 |
+
ax2.set_ylabel("PDF(x)")
|
379 |
+
ax2.legend()
|
380 |
+
ax2.set_ylim((0, 1))
|
381 |
+
|
382 |
+
st.pyplot(fig2)
|
383 |
+
|
384 |
+
|
385 |
+
def Laplace():
|
386 |
+
st.subheader("Laplace distribution")
|
387 |
+
p = tfd.Laplace(0, 3)
|
388 |
+
m = st.slider('mu', 0, 5, 1)
|
389 |
+
s = st.slider('sigma', 0, 5, 1)
|
390 |
+
|
391 |
+
cdf = r'''
|
392 |
+
cdf = $\int_a^b f(x)dx$
|
393 |
+
'''
|
394 |
+
|
395 |
+
st.latex(cdf)
|
396 |
+
q = tfd.Laplace(m, s)
|
397 |
+
z_values = tf.linspace(-5, 5, 200)
|
398 |
+
z_values = tf.cast(z_values, tf.float32)
|
399 |
+
prob_values_p = p.prob(z_values)
|
400 |
+
prob_values_q = q.prob(z_values)
|
401 |
+
|
402 |
+
fig, ax = plt.subplots()
|
403 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
404 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
405 |
+
|
406 |
+
ax.set_xlabel("x")
|
407 |
+
ax.set_ylabel("PDF(x)")
|
408 |
+
ax.legend()
|
409 |
+
ax.set_ylim((0, 1))
|
410 |
+
|
411 |
+
st.pyplot(fig)
|
412 |
+
kl = tfd.kl_divergence(q, p)
|
413 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
414 |
+
|
415 |
+
|
416 |
+
def Pareto():
|
417 |
+
st.subheader("Pareto distribution")
|
418 |
+
p = tfd.Pareto(2, 1)
|
419 |
+
a = st.slider('alpha', 0.0, 5.0, 2.5, 0.5)
|
420 |
+
s = st.slider('scale', 0.0, 5.0, 2.5, 0.5)
|
421 |
+
|
422 |
+
cdf = r'''
|
423 |
+
cdf = $\int_a^b f(x)dx$
|
424 |
+
'''
|
425 |
+
|
426 |
+
st.latex(cdf)
|
427 |
+
q = tfd.Pareto(a, s)
|
428 |
+
z_values = tf.linspace(0, 5, 200)
|
429 |
+
z_values = tf.cast(z_values, tf.float32)
|
430 |
+
prob_values_p = p.prob(z_values)
|
431 |
+
prob_values_q = q.prob(z_values)
|
432 |
+
|
433 |
+
fig, ax = plt.subplots()
|
434 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=2, alpha=0.5)
|
435 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
436 |
+
|
437 |
+
ax.set_xlabel("x")
|
438 |
+
ax.set_ylabel("PDF(x)")
|
439 |
+
ax.legend()
|
440 |
+
|
441 |
+
st.pyplot(fig)
|
442 |
+
kl = tfd.kl_divergence(q, p)
|
443 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
444 |
+
|
445 |
+
def Weibull():
|
446 |
+
st.header("Weibull distribution")
|
447 |
+
p = tfd.Weibull(1,2)
|
448 |
+
k = st.slider('k', 0.0, 5.0, 0.5, 0.5)
|
449 |
+
l = st.slider('lambda', 0.0, 5.0, 0.5, 0.5)
|
450 |
+
|
451 |
+
cdf = r'''
|
452 |
+
cdf = $\int_a^b f(x)dx$
|
453 |
+
'''
|
454 |
+
|
455 |
+
st.latex(cdf)
|
456 |
+
q = tfd.Weibull(k, l)
|
457 |
+
z_values = tf.linspace(0, 10, 200)
|
458 |
+
z_values = tf.cast(z_values, tf.float32)
|
459 |
+
prob_values_p = p.prob(z_values)
|
460 |
+
prob_values_q = q.prob(z_values)
|
461 |
+
|
462 |
+
fig, ax = plt.subplots()
|
463 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
464 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
465 |
+
|
466 |
+
ax.set_xlabel("x")
|
467 |
+
ax.set_ylabel("PDF(x)")
|
468 |
+
ax.legend()
|
469 |
+
ax.set_ylim((0, 2))
|
470 |
+
|
471 |
+
st.pyplot(fig)
|
472 |
+
kl = tfd.kl_divergence(q, p)
|
473 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
474 |
+
|
475 |
+
st.subheader("Relationship between Weibull and Exponential Distribution")
|
476 |
+
l1 = st.slider('l', 0.0, 5.0, 1.0, 0.5)
|
477 |
+
k1 = 1
|
478 |
+
st.write("k=1")
|
479 |
+
q2 = tfd.Weibull(k1, l1)
|
480 |
+
prob_values_q2 = list(q2.prob(z_values))
|
481 |
+
q3 = tfd.Exponential(1/l1)
|
482 |
+
prob_values_q3 = list(q3.prob(z_values))
|
483 |
+
fig3, ax3 = plt.subplots()
|
484 |
+
ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Weibull(1,l)')
|
485 |
+
ax3.plot(z_values, prob_values_q3, label=r'Exponential(1/l)')
|
486 |
+
|
487 |
+
ax3.set_xlabel("x")
|
488 |
+
ax3.set_ylabel("PDF(x)")
|
489 |
+
ax3.legend()
|
490 |
+
ax3.set_ylim((0, 2))
|
491 |
+
st.pyplot(fig3)
|
492 |
+
|
493 |
+
def StudentT():
|
494 |
+
st.subheader("StudentT Distribution")
|
495 |
+
p = tfd.StudentT(1,0,1)
|
496 |
+
df = st.slider('df',0,5,2,1)
|
497 |
+
loc = st.slider('loc', 0, 5, 2, 1)
|
498 |
+
scale = st.slider('scale', 0, 5, 2, 1)
|
499 |
+
|
500 |
+
cdf = r'''
|
501 |
+
cdf = $\int_a^b f(x)dx$
|
502 |
+
'''
|
503 |
+
|
504 |
+
st.latex(cdf)
|
505 |
+
q = tfd.StudentT(df,loc,scale)
|
506 |
+
z_values = tf.linspace(-10, 10 , 200)
|
507 |
+
z_values = tf.cast(z_values, tf.float32)
|
508 |
+
prob_values_p = p.prob(z_values)
|
509 |
+
prob_values_q = q.prob(z_values)
|
510 |
+
|
511 |
+
fig, ax = plt.subplots()
|
512 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=3, alpha=0.5)
|
513 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
514 |
+
|
515 |
+
ax.set_xlabel("x")
|
516 |
+
ax.set_ylabel("PDF(x)")
|
517 |
+
ax.legend()
|
518 |
+
ax.set_ylim((0, 1))
|
519 |
+
|
520 |
+
st.pyplot(fig)
|
521 |
+
|
522 |
+
st.subheader("Relationship between Cauchy and StudentT Distribution")
|
523 |
+
q2 = tfd.Cauchy(0, 1)
|
524 |
+
q3 = tfd.StudentT(1, 0, 1)
|
525 |
+
prob_values_q2 = list(q2.prob(z_values))
|
526 |
+
prob_values_q3 = list(q3.prob(z_values))
|
527 |
+
|
528 |
+
fig2, ax2 = plt.subplots()
|
529 |
+
ax2.plot(z_values, prob_values_q2, label=r'Cauchy(0,1)', linestyle='--', lw=3)
|
530 |
+
ax2.plot(z_values, prob_values_q3, label=r'StudentT(1,0,1)')
|
531 |
+
|
532 |
+
ax2.set_xlabel("x")
|
533 |
+
ax2.set_ylabel("PDF(x)")
|
534 |
+
ax2.legend()
|
535 |
+
ax2.set_ylim((0, 1))
|
536 |
+
|
537 |
+
st.pyplot(fig2)
|
538 |
+
|
539 |
+
def Beta():
|
540 |
+
st.subheader("Beta distribution")
|
541 |
+
p = tfd.Beta(1.5,1.1)
|
542 |
+
alpha = st.slider('alpha', 0.0, 2.0, 1.2,0.1)
|
543 |
+
beta = st.slider('beta', 0.0, 2.0, 1.2,0.1)
|
544 |
+
|
545 |
+
cdf = r'''
|
546 |
+
cdf = $\int_a^b f(x)dx$
|
547 |
+
'''
|
548 |
+
|
549 |
+
st.latex(cdf)
|
550 |
+
q = tfd.Beta(alpha, beta)
|
551 |
+
z_values = tf.linspace(0, 1, 200)
|
552 |
+
z_values = tf.cast(z_values, tf.float32)
|
553 |
+
prob_values_p = p.prob(z_values)
|
554 |
+
prob_values_q = q.prob(z_values)
|
555 |
+
|
556 |
+
fig, ax = plt.subplots()
|
557 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
558 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
559 |
+
|
560 |
+
ax.set_xlabel("x")
|
561 |
+
ax.set_ylabel("PDF(x)")
|
562 |
+
ax.legend()
|
563 |
+
#ax.set_ylim((0, 1))
|
564 |
+
|
565 |
+
st.pyplot(fig)
|
566 |
+
kl = tfd.kl_divergence(q, p)
|
567 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
568 |
+
|
569 |
+
st.subheader("Relationship between Beta Distribution and Normal Distribution")
|
570 |
+
alpha1 = st.slider('beta=alpha', 50, 500,250, 50)
|
571 |
+
q2 = tfd.Beta(alpha1, alpha1)
|
572 |
+
q3 = tfd.Normal(0.5,sqrt(0.25/(2*alpha1+1)))
|
573 |
+
z_values1 = tf.linspace(0, 1, 200)
|
574 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
575 |
+
prob_values_q2 = q2.prob(z_values1)
|
576 |
+
prob_values_q3 = q3.prob(z_values1)
|
577 |
+
|
578 |
+
fig2, ax2 = plt.subplots()
|
579 |
+
ax2.plot(z_values1, prob_values_q2, label=r'Beta(alpha,Beta)', linestyle='--', lw=3)
|
580 |
+
ax2.plot(z_values1, prob_values_q3, label=r'Normal')
|
581 |
+
|
582 |
+
ax2.set_xlabel("x")
|
583 |
+
ax2.set_ylabel("PDF(x)")
|
584 |
+
ax2.legend()
|
585 |
+
#ax2.set_ylim((0, 1))
|
586 |
+
|
587 |
+
st.pyplot(fig2)
|
588 |
+
|
589 |
+
st.subheader("Relationship between Beta Distribution and Uniform Distribution")
|
590 |
+
|
591 |
+
st.write("beta = alpha= 1")
|
592 |
+
q4 = tfd.Beta(1,1)
|
593 |
+
q5 = tfd.Uniform(0,1)
|
594 |
+
z_values1 = tf.linspace(0, 1, 200)
|
595 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
596 |
+
prob_values_q4 = list(q4.prob(z_values1))
|
597 |
+
prob_values_q5 = list(q5.prob(z_values1))
|
598 |
+
|
599 |
+
fig3, ax3 = plt.subplots()
|
600 |
+
ax3.plot(z_values1, prob_values_q4, label=r'Beta(1,1)', linestyle='--', lw=3)
|
601 |
+
ax3.plot(z_values1, prob_values_q5, label=r'Uniform(0,1)')
|
602 |
+
|
603 |
+
ax3.set_xlabel("x")
|
604 |
+
ax3.set_ylabel("PDF(x)")
|
605 |
+
ax3.legend()
|
606 |
+
#ax3.set_ylim((0, 1))
|
607 |
+
|
608 |
+
st.pyplot(fig3)
|
609 |
+
|
610 |
+
st.subheader("Transformation of Beta Distribution")
|
611 |
+
alpha2 = st.slider('alpha2', 0.0, 2.0, 1.2,0.1)
|
612 |
+
beta2 = st.slider('beta2', 0.0, 2.0, 1.8,0.1)
|
613 |
+
p1 = tfd.Beta(alpha2, beta2)
|
614 |
+
prob_values_new = list(p1.prob(z_values))
|
615 |
+
z_values2 = np.zeros(len(z_values))
|
616 |
+
for i in range(len(z_values2)):
|
617 |
+
z_values2[i] = 1 - z_values[i]
|
618 |
+
|
619 |
+
q1 = tfd.Beta(beta2,alpha2)
|
620 |
+
new = list(q1.prob(z_values))
|
621 |
+
fig2, ax2 = plt.subplots()
|
622 |
+
ax2.plot(z_values, prob_values_new, label=r'X->Beta(alpha,beta)', lw=3)
|
623 |
+
ax2.plot(z_values2, prob_values_new, label=r'X transformed to 1-X', lw=2)
|
624 |
+
ax2.plot(z_values, new, label=r'X->Beta(beta,alpha)', linestyle='--', lw=2)
|
625 |
+
|
626 |
+
ax2.set_xlabel("x")
|
627 |
+
ax2.set_ylabel("PDF(x)")
|
628 |
+
ax2.legend()
|
629 |
+
st.pyplot(fig2)
|
630 |
+
|
631 |
+
|
632 |
+
def Poisson():
|
633 |
+
st.subheader("Poisson distribution")
|
634 |
+
p = tfd.Poisson(5)
|
635 |
+
rate = st.slider('lambda', 0, 10, 1)
|
636 |
+
|
637 |
+
cdf = r'''
|
638 |
+
cdf = $\int_a^b f(x)dx$
|
639 |
+
'''
|
640 |
+
|
641 |
+
st.latex(cdf)
|
642 |
+
q = tfd.Poisson(rate)
|
643 |
+
z_values = tf.linspace(-2, 10, 13)
|
644 |
+
z_values = tf.cast(z_values, tf.float32)
|
645 |
+
prob_values_p = p.prob(z_values)
|
646 |
+
prob_values_q = q.prob(z_values)
|
647 |
+
|
648 |
+
fig, ax = plt.subplots()
|
649 |
+
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='r', markerfmt='ro')
|
650 |
+
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='--', markerfmt='bo')
|
651 |
+
|
652 |
+
ax.set_xlabel("x")
|
653 |
+
ax.set_ylabel("PDF(x)")
|
654 |
+
ax.legend()
|
655 |
+
ax.set_ylim((0, 1))
|
656 |
+
st.pyplot(fig)
|
657 |
+
st.subheader("Addition of two Poisson distributions")
|
658 |
+
rate1 = st.slider('lambda1', 0, 10, 1)
|
659 |
+
rate2 = st.slider('lambda2', 0, 10, 1)
|
660 |
+
q1 = tfd.Poisson(rate1)
|
661 |
+
q2 = tfd.Poisson(rate2)
|
662 |
+
prob_values_q1 = list(q1.prob(z_values))
|
663 |
+
prob_values_q2 = list(q2.prob(z_values))
|
664 |
+
fig2, (ax2,ax3) = plt.subplots(1,2)
|
665 |
+
ax2.stem(z_values, prob_values_q1, linefmt='r', markerfmt='ro')
|
666 |
+
ax3.stem(z_values, prob_values_q2, linefmt='--', markerfmt='bo')
|
667 |
+
|
668 |
+
ax2.set_xlabel("x")
|
669 |
+
ax2.set_title("Poisson(lambda1)")
|
670 |
+
ax2.set_ylim((0, 1))
|
671 |
+
|
672 |
+
ax3.set_xlabel("x")
|
673 |
+
ax3.set_title("Poisson(lambda2)")
|
674 |
+
ax3.set_ylim((0, 1))
|
675 |
+
|
676 |
+
st.pyplot(fig2)
|
677 |
+
|
678 |
+
prob_values_sum =Sum(prob_values_q1, prob_values_q2, z_values)
|
679 |
+
q3 = tfd.Poisson(rate1+rate2)
|
680 |
+
prob_values_q3 = list(q3.prob(range(len(prob_values_sum))))
|
681 |
+
fig3, ax4 = plt.subplots()
|
682 |
+
ax4.stem(range(len(prob_values_sum)), prob_values_sum, label=r'Poisson(lambda1)+Poisson(lambda2)', linefmt='r', markerfmt='ro')
|
683 |
+
ax4.stem(range(len(prob_values_sum)), prob_values_q3, linefmt='--', label=r'Poisson(lambda1+lambda2)', markerfmt='bo')
|
684 |
+
ax4.set_xlabel("x")
|
685 |
+
ax4.set_ylabel("PDF(x)")
|
686 |
+
ax4.legend()
|
687 |
+
ax4.set_ylim((0, 1))
|
688 |
+
st.pyplot(fig3)
|
689 |
+
st.markdown("Summation of two poisson distribution with parameter lamba1 and lambda2 yields Poisson distribution with parameter (lambda1+lambda2)")
|
690 |
+
|
691 |
+
st.subheader("Relationship between Poisson and Normal Distribution")
|
692 |
+
rate3 = st.slider('lambda1', 100, 500,250,50)
|
693 |
+
q4 = tfd.Poisson(rate=rate3)
|
694 |
+
z_values1 = tf.linspace(0, 600, 601)
|
695 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
696 |
+
prob_values_q4 = list(q4.prob(z_values1))
|
697 |
+
q5 = tfd.Normal(rate3, sqrt(rate3))
|
698 |
+
prob_values_q5 = list(q5.prob(z_values1))
|
699 |
+
|
700 |
+
fig4, ax5 = plt.subplots()
|
701 |
+
ax5.stem(z_values1, prob_values_q4, label=r'Poisson(lambda1)]', linefmt='r', markerfmt='ro')
|
702 |
+
ax5.plot(z_values1, prob_values_q5, label=r'Normal(lamda1,sqrt(lambda1)', lw=3)
|
703 |
+
ax5.set_xlabel("x")
|
704 |
+
ax5.set_ylabel("PDF(x)")
|
705 |
+
ax5.legend()
|
706 |
+
ax5.set_ylim((0, 0.1))
|
707 |
+
st.pyplot(fig4)
|
708 |
+
st.markdown("for large values of lambda, Poisson(lambda) becomes approximately a normal distribution having mean= lambda and variance= lambda")
|
709 |
+
|
710 |
+
|
711 |
+
def Binomial():
|
712 |
+
st.subheader("Binomial distribution")
|
713 |
+
p = tfd.Binomial(total_count=5, probs=.5)
|
714 |
+
count = st.slider('n', 1, 10, 4, 1)
|
715 |
+
prob = st.slider('prob', 0.0, 1.0, 0.5,0.1)
|
716 |
+
st1 = r'''
|
717 |
+
Mean = \[n p \]
|
718 |
+
Variance = \[n p q\]
|
719 |
+
Entropy = \[\frac{1}{2} \log_2 (2 \pi n e p q)\ + O ( \frac {1}{n}) \]
|
720 |
+
'''
|
721 |
+
|
722 |
+
st.latex(st1)
|
723 |
+
q = tfd.Binomial(total_count=count, probs=prob )
|
724 |
+
z_values = tf.linspace(0, 10, 11)
|
725 |
+
z_values = tf.cast(z_values, tf.float32)
|
726 |
+
prob_values_p = list(p.prob(z_values))
|
727 |
+
prob_values_q = list(q.prob(z_values))
|
728 |
+
|
729 |
+
fig, ax = plt.subplots()
|
730 |
+
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt = 'r', markerfmt = 'ro')
|
731 |
+
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt ='--', markerfmt = 'bo')
|
732 |
+
|
733 |
+
ax.set_xlabel("x")
|
734 |
+
ax.set_ylabel("PDF(x)")
|
735 |
+
ax.legend()
|
736 |
+
ax.set_ylim((0, 1))
|
737 |
+
|
738 |
+
st.pyplot(fig)
|
739 |
+
|
740 |
+
st.markdown("Relationship between Poisson and Binomial Distribution")
|
741 |
+
count1 = st.slider('n', 750, 1000, 800, 25)
|
742 |
+
prob1 = st.slider('prob', 0.0, 0.010, 0.001, 0.001)
|
743 |
+
|
744 |
+
t = tfd.Binomial(total_count=count1, probs=prob1)
|
745 |
+
r = tfd.Poisson(count1*prob1)
|
746 |
+
|
747 |
+
z_values1 = tf.linspace(0, 50, 51)
|
748 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
749 |
+
prob_values_t = t.prob(z_values1)
|
750 |
+
prob_values_r = r.prob(z_values1)
|
751 |
+
|
752 |
+
fig1, ax = plt.subplots()
|
753 |
+
ax.stem(z_values1, prob_values_t, label=r'binomial', linefmt='r', markerfmt='ro')
|
754 |
+
ax.stem(z_values1, prob_values_r, label=r'poisson', linefmt='--', markerfmt='bo')
|
755 |
+
|
756 |
+
ax.set_xlabel("x")
|
757 |
+
ax.set_ylabel("PDF(x)")
|
758 |
+
ax.legend()
|
759 |
+
ax.set_ylim((0, 0.5))
|
760 |
+
|
761 |
+
st.pyplot(fig1)
|
762 |
+
st.markdown("")
|
763 |
+
st.markdown("It is clear from the graph, that for large values of n and small values of p, the binomial distribution approximates to poisson distribution.")
|
764 |
+
st.markdown("")
|
765 |
+
|
766 |
+
st.markdown("Transformation of Binomial Distribution")
|
767 |
+
count2 = st.slider('n1', 1, 10, 4, 1)
|
768 |
+
prob2 = st.slider('p', 0.0, 1.0, 0.5, 0.1)
|
769 |
+
p1 = tfd.Binomial(total_count=count2, probs=prob2)
|
770 |
+
prob_values_n_p = list(p1.prob(z_values))
|
771 |
+
z_values2=np.zeros(len(z_values))
|
772 |
+
for i in range(len(z_values2)):
|
773 |
+
z_values2[i]=count2-z_values[i]
|
774 |
+
|
775 |
+
q1 = tfd.Binomial(total_count=count2, probs=1-prob2)
|
776 |
+
new = list(q1.prob(z_values))
|
777 |
+
fig2, ax = plt.subplots()
|
778 |
+
ax.stem(z_values, prob_values_n_p, label=r'X->Binomial(n,p)', linefmt='r', markerfmt='ro')
|
779 |
+
ax.stem(z_values2, prob_values_n_p, label=r'X transformed to N-X', linefmt='g', markerfmt='go')
|
780 |
+
ax.stem(z_values, new, label=r'X->Binomial(n,1-p)', linefmt='--', markerfmt='bo')
|
781 |
+
|
782 |
+
ax.set_xlabel("x")
|
783 |
+
ax.set_ylabel("PDF(x)")
|
784 |
+
ax.legend()
|
785 |
+
ax.set_ylim((0, 1))
|
786 |
+
ax.set_xlim((-0.5,count2+0.5))
|
787 |
+
st.pyplot(fig2)
|
788 |
+
st.markdown("When a r.v. X with the binomial(n,p) distribution is transformed to n-X, we get a binomial(n,1-p) distribution.")
|
789 |
+
|
790 |
+
st.markdown("Relationship between Normal and Binomial Distribution")
|
791 |
+
count3 = st.slider('n3', 750, 1000, 800, 25)
|
792 |
+
prob3 = st.slider('prob3', 0.0, 1.0, 0.5, 0.1)
|
793 |
+
|
794 |
+
t = tfd.Binomial(total_count=count3, probs=prob3)
|
795 |
+
r = tfd.Normal(count3 * prob3, sqrt((count3*prob3*(1-prob3))))
|
796 |
+
|
797 |
+
z_values1 = tf.linspace(0, 1000, 1001)
|
798 |
+
z_values1 = tf.cast(z_values1, tf.float32)
|
799 |
+
prob_values_t = t.prob(z_values1)
|
800 |
+
prob_values_r = r.prob(z_values1)
|
801 |
+
|
802 |
+
fig2, ax2 = plt.subplots()
|
803 |
+
ax2.stem(z_values1, prob_values_t, label=r'Binomial', linefmt='r', markerfmt='ro')
|
804 |
+
ax2.plot(z_values1, prob_values_r, label=r'Normal', lw=3)
|
805 |
+
|
806 |
+
ax2.set_xlabel("x")
|
807 |
+
ax2.set_ylabel("PDF(x)")
|
808 |
+
ax2.legend()
|
809 |
+
ax2.set_ylim((0, 0.1))
|
810 |
+
|
811 |
+
st.pyplot(fig2)
|
812 |
+
st.markdown("")
|
813 |
+
st.markdown("For large values of n, the binomial distribution approximates to the normal distribution with mean = n*p and variance = n*p*(1-p)")
|
814 |
+
st.markdown("")
|
815 |
+
|
816 |
+
|
817 |
+
def Bernoulli_dist():
|
818 |
+
st.header("Bernoulli distribution")
|
819 |
+
p = tfd.Bernoulli(probs=0.5)
|
820 |
+
suc = st.slider('p', 0.0, 1.0, 0.8, 0.1)
|
821 |
+
|
822 |
+
pmf = r'''
|
823 |
+
|
824 |
+
pmf = f(x) = p \quad \qquad if x=1
|
825 |
+
\\ \qquad \qquad \quad \,\,\,= 1-p \quad \,\, if x=0
|
826 |
+
\\ \,\,\,\quad\qquad= 0 \quad\qquad else
|
827 |
+
'''
|
828 |
+
mean = suc
|
829 |
+
variance = suc*(1-suc)
|
830 |
+
|
831 |
+
st1 = f'''
|
832 |
+
mean = p = {mean}\\\\
|
833 |
+
variance = p*(1-p) = {variance:0.3f}\\\\
|
834 |
+
Entropy = -q lnq - p ln p
|
835 |
+
'''
|
836 |
+
st.latex(pmf)
|
837 |
+
st.latex(st1)
|
838 |
+
q = tfd.Bernoulli(probs = suc)
|
839 |
+
z_values = tf.linspace(0, 1, 2)
|
840 |
+
z_values = tf.cast(z_values, tf.float32)
|
841 |
+
prob_values_p = p.prob(z_values)
|
842 |
+
prob_values_q = q.prob(z_values)
|
843 |
+
fig, ax = plt.subplots()
|
844 |
+
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo')
|
845 |
+
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go')
|
846 |
+
|
847 |
+
ax.set_xlabel("x")
|
848 |
+
ax.set_ylabel("PDF(x)")
|
849 |
+
ax.legend()
|
850 |
+
ax.set_ylim((0, 1))
|
851 |
+
|
852 |
+
st.pyplot(fig)
|
853 |
+
st.subheader("Multiplication of two Bernoulli distributions")
|
854 |
+
p1 = st.slider('p1', 0.0, 1.0, 0.2, 0.1)
|
855 |
+
p2 = st.slider('p2', 0.0, 1.0, 0.7, 0.1)
|
856 |
+
|
857 |
+
rv_p1 = tfd.Bernoulli(probs=p1)
|
858 |
+
rv_p2 = tfd.Bernoulli(probs=p2)
|
859 |
+
prob_values_p1 = rv_p1.prob(z_values)
|
860 |
+
prob_values_p2 = rv_p2.prob(z_values)
|
861 |
+
prob_values_pone = list(prob_values_p1)
|
862 |
+
prob_values_ptwo = list(prob_values_p2)
|
863 |
+
prob_values_pdt = Product(prob_values_pone, prob_values_ptwo, z_values)
|
864 |
+
|
865 |
+
fig1,(ax1,ax2)=plt.subplots(1,2)
|
866 |
+
ax1.stem(z_values, prob_values_p1, label=r'p1', linefmt='b', markerfmt='bo')
|
867 |
+
ax2.stem(z_values, prob_values_p2, label=r'p2', linefmt='g', markerfmt='go')
|
868 |
+
|
869 |
+
ax1.set_title("Bernoulli(p1)")
|
870 |
+
ax1.set_xlabel("x")
|
871 |
+
ax1.set_ylabel("PDF(x)")
|
872 |
+
ax1.set_ylim((0, 1))
|
873 |
+
|
874 |
+
ax2.set_title("Bernoulli(p2)")
|
875 |
+
ax2.set_xlabel("x")
|
876 |
+
ax2.set_ylim((0, 1))
|
877 |
+
|
878 |
+
st.pyplot(fig1)
|
879 |
+
|
880 |
+
rv_p1p2 = tfd.Bernoulli(probs=p1*p2)
|
881 |
+
prob_values_p1p2 = rv_p1p2.prob(range(len(prob_values_pdt)))
|
882 |
+
|
883 |
+
fig2, ax3 = plt.subplots()
|
884 |
+
ax3.stem(range(len(prob_values_pdt)), prob_values_pdt, label=r'Product of Bernoulli(p1) and Bernoulli(p2)', linefmt='r', markerfmt='ro')
|
885 |
+
ax3.stem(range(len(prob_values_pdt)), prob_values_p1p2, label=r'Bernoulli(p1*p2)', linefmt='--', markerfmt='bo')
|
886 |
+
ax3.set_xlabel("x")
|
887 |
+
ax3.set_ylabel("PDF(x)")
|
888 |
+
ax3.legend()
|
889 |
+
ax3.set_ylim((0, 1))
|
890 |
+
ax3.set_xlim((-0.5, 1.5))
|
891 |
+
|
892 |
+
st.pyplot(fig2)
|
893 |
+
st.markdown("Multiplication of a Bernoulli(p1) distribution with Bernouli(p2) gives a Bernoulli distribution with parameter=p1*p2")
|
894 |
+
st.subheader("Addition of two Bernoulli distributions")
|
895 |
+
p3 = st.slider('p3', 0.0, 1.0, 0.6, 0.1)
|
896 |
+
rv_p3 = tfd.Bernoulli(probs=p3)
|
897 |
+
prob_values_p3 = list(rv_p3.prob(z_values))
|
898 |
+
prob_values_sum=Sum(prob_values_p3, prob_values_p3, z_values)
|
899 |
+
fig3, ax4 = plt.subplots()
|
900 |
+
ax4.stem(range(len(prob_values_sum)), prob_values_sum, label=r'Sum of 2 Bernoulli(p3) distributions', linefmt='r', markerfmt='ro')
|
901 |
+
b = tfd.Binomial(total_count=2, probs=p3)
|
902 |
+
prob_values_bin = list(b.prob(range(len(prob_values_sum))))
|
903 |
+
ax4.stem(range(len(prob_values_sum)), prob_values_bin, label=r'Binomial(2,p3)', linefmt='--', markerfmt='bo')
|
904 |
+
ax4.set_xlabel("x")
|
905 |
+
ax4.set_ylabel("PDF(x)")
|
906 |
+
ax4.legend()
|
907 |
+
ax4.set_ylim((0, 1))
|
908 |
+
|
909 |
+
st.pyplot(fig3)
|
910 |
+
st.markdown("The sum of n Bernoulli(p) distributions is a binomial(n,p) distribution")
|
911 |
+
|
912 |
+
def BetaBinomial():
|
913 |
+
st.markdown("Beta Binomial distribution")
|
914 |
+
p = tfd.BetaBinomial(8,0.5,1.2)
|
915 |
+
num = st.slider('n', 0, 10, 5, 1)
|
916 |
+
al = st.slider('alpha', 0.0, 5.0, 0.2, 0.1)
|
917 |
+
be = st.slider('beta', 0.0, 5.0, 0.2, 0.1)
|
918 |
+
|
919 |
+
|
920 |
+
st1 = r'''
|
921 |
+
Mean = \[ \frac {n \alpha}{\alpha + \beta} \]
|
922 |
+
Variance = \[ \frac {(n \alpha \beta)(\alpha + \beta + n)}{(\alpha + \beta + 1) (\alpha + \beta)^2} \]
|
923 |
+
'''
|
924 |
+
|
925 |
+
st.latex(st1)
|
926 |
+
q = tfd.BetaBinomial(num, al, be)
|
927 |
+
z_values = tf.linspace(0, 10, 11)
|
928 |
+
z_values = tf.cast(z_values, tf.float32)
|
929 |
+
prob_values_p = p.prob(z_values)
|
930 |
+
prob_values_q = q.prob(z_values)
|
931 |
+
|
932 |
+
fig, ax = plt.subplots()
|
933 |
+
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='r', markerfmt='ro')
|
934 |
+
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='--', markerfmt='bo')
|
935 |
+
|
936 |
+
ax.set_xlabel("x")
|
937 |
+
ax.set_ylabel("PDF(x)")
|
938 |
+
ax.legend()
|
939 |
+
ax.set_ylim((0, 1))
|
940 |
+
|
941 |
+
st.pyplot(fig)
|
942 |
+
|
943 |
+
st.markdown("")
|
944 |
+
st.markdown("Relarionship between BetaBinomial and Uniform-Discrete Distribution")
|
945 |
+
st.markdown("")
|
946 |
+
num2 = st.slider('n2', 0, 10, 5, 1)
|
947 |
+
q2 = tfd.BetaBinomial(num2, 1, 1)
|
948 |
+
prob_values_q2 = q2.prob(z_values)
|
949 |
+
|
950 |
+
|
951 |
+
fig2, ax2 = plt.subplots()
|
952 |
+
ax2.stem(z_values, prob_values_q2, label=r'BetaBinomial(n,1,1)', linefmt='r', markerfmt='ro')
|
953 |
+
|
954 |
+
ax2.set_xlabel("x")
|
955 |
+
ax2.set_ylabel("PDF(x)")
|
956 |
+
ax2.legend()
|
957 |
+
ax2.set_ylim((0, 1))
|
958 |
+
|
959 |
+
st.pyplot(fig2)
|
960 |
+
st.markdown("A BetaBinomial(n,alpha,beta) with alpha=beta=1 becomes a uniform-discrete distribution from 0 to n(n2 here)")
|
961 |
+
st.markdown("")
|
962 |
+
|
963 |
+
st.markdown("Relationship between Binomial and BetaBinomial Distribution")
|
964 |
+
num3 = st.slider('_n', 0, 10, 5, 1)
|
965 |
+
al2 = st.slider('_alpha', 100, 500, 200, 50)
|
966 |
+
be2 = st.slider('_beta', 100, 500, 200, 50)
|
967 |
+
|
968 |
+
q3 = tfd.BetaBinomial(num3, al2, be2)
|
969 |
+
prob_values_q3 = q3.prob(z_values)
|
970 |
+
|
971 |
+
success = al2/(al2+be2)
|
972 |
+
q4 = tfd.Binomial(total_count=num3, probs=success)
|
973 |
+
prob_values_q4 = q4.prob(z_values)
|
974 |
+
|
975 |
+
fig3, ax3 = plt.subplots()
|
976 |
+
ax3.stem(z_values, prob_values_q3, label=r'BetaBinomial', linefmt='r', markerfmt='ro')
|
977 |
+
ax3.stem(z_values, prob_values_q4, label=r'Binomial', linefmt='--', markerfmt='bo')
|
978 |
+
ax3.set_xlabel("x")
|
979 |
+
ax3.set_ylabel("PDF(x)")
|
980 |
+
ax3.legend()
|
981 |
+
ax3.set_ylim((0, 1))
|
982 |
+
|
983 |
+
st.pyplot(fig3)
|
984 |
+
st.markdown("For large values of (alpha+beta), the BetaBinomial approximates to the Binomial Distribution with the probanility of success = alpha/(alpha+beta)")
|
985 |
+
st.markdown("")
|
986 |
+
|
987 |
+
def Geometric():
|
988 |
+
st.subheader("Geometric distribution")
|
989 |
+
p = tfd.Geometric(probs=0.2)
|
990 |
+
prob = st.slider('prob', 0.0, 1.0, 0.4, 0.1)
|
991 |
+
|
992 |
+
st1 = r'''
|
993 |
+
Mean=\[ \frac {1}{p} \]
|
994 |
+
Variance= \[ \frac {1-p}{p^2} \]
|
995 |
+
Entropy = \[ \frac { -(1-p) \log_2 {(1-p)} - p \log_2 p} {p}\]
|
996 |
+
'''
|
997 |
+
|
998 |
+
st.latex(st1)
|
999 |
+
q = tfd.Geometric(probs=prob)
|
1000 |
+
z_values = tf.linspace(0, 10, 11)
|
1001 |
+
z_values = tf.cast(z_values, tf.float32)
|
1002 |
+
prob_values_p = p.prob(z_values)
|
1003 |
+
prob_values_q = q.prob(z_values)
|
1004 |
+
|
1005 |
+
fig, ax = plt.subplots()
|
1006 |
+
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo')
|
1007 |
+
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go')
|
1008 |
+
ax.set_xlabel("x")
|
1009 |
+
ax.set_ylabel("PMF(x)")
|
1010 |
+
ax.legend()
|
1011 |
+
ax.set_ylim((0, 1))
|
1012 |
+
|
1013 |
+
st.pyplot(fig)
|
1014 |
+
|
1015 |
+
def Gamma():
|
1016 |
+
st.subheader("Gamma distribution")
|
1017 |
+
p = tfd.Gamma(concentration = 3.5, rate = 3 )
|
1018 |
+
concn = st.slider('concentration', 0.0, 10.0, 5.0, 0.5)
|
1019 |
+
rat = st.slider('rate', 0.0, 10.0, 2.0, 0.5)
|
1020 |
+
|
1021 |
+
cdf = r'''
|
1022 |
+
cdf = $\int_a^b f(x)dx$
|
1023 |
+
'''
|
1024 |
+
|
1025 |
+
st.latex(cdf)
|
1026 |
+
q = tfd.Gamma(concentration = concn, rate = rat )
|
1027 |
+
z_values = tf.linspace(0, 20, 200)
|
1028 |
+
z_values = tf.cast(z_values, tf.float32)
|
1029 |
+
prob_values_p = p.prob(z_values)
|
1030 |
+
prob_values_q = q.prob(z_values)
|
1031 |
+
|
1032 |
+
fig, ax = plt.subplots()
|
1033 |
+
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5)
|
1034 |
+
ax.plot(z_values, prob_values_q, label=r'q')
|
1035 |
+
|
1036 |
+
ax.set_xlabel("x")
|
1037 |
+
ax.set_ylabel("PDF(x)")
|
1038 |
+
ax.legend()
|
1039 |
+
#ax.set_ylim((0, 1))
|
1040 |
+
|
1041 |
+
st.pyplot(fig)
|
1042 |
+
kl = tfd.kl_divergence(q, p)
|
1043 |
+
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}")
|
1044 |
+
|
1045 |
+
st.subheader("Relationship between Gamma and Exponential Distribution")
|
1046 |
+
alpha1=1
|
1047 |
+
st.write("alpha1=1")
|
1048 |
+
beta1 = st.slider('beta1', 0.0, 10.0, 5.0, 0.5)
|
1049 |
+
q2 = tfd.Gamma(concentration=alpha1, rate=beta1)
|
1050 |
+
prob_values_q2 = list(q2.prob(z_values))
|
1051 |
+
q3 = tfd.Exponential(beta1)
|
1052 |
+
prob_values_q3 = list(q3.prob(z_values))
|
1053 |
+
fig3, ax3 = plt.subplots()
|
1054 |
+
ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Gamma(1,beta)')
|
1055 |
+
ax3.plot(z_values, prob_values_q3, label=r'Exponential(beta)')
|
1056 |
+
|
1057 |
+
ax3.set_xlabel("x")
|
1058 |
+
ax3.set_ylabel("PDF(x)")
|
1059 |
+
ax3.legend()
|
1060 |
+
#ax3.set_ylim((0, 1))
|
1061 |
+
st.pyplot(fig3)
|
1062 |
+
|
1063 |
+
def NegBin():
|
1064 |
+
st.markdown("Negative Binomial distribution")
|
1065 |
+
p = tfd.NegativeBinomial(total_count=5, probs=.5)
|
1066 |
+
count = st.slider('n', 1, 10, 1)
|
1067 |
+
prob = st.slider('prob', 0.0, 1.0, 0.1)
|
1068 |
+
cdf = r'''
|
1069 |
+
cdf = $\int_a^b f(x)dx$
|
1070 |
+
'''
|
1071 |
+
|
1072 |
+
st.latex(cdf)
|
1073 |
+
q = tfd.NegativeBinomial(total_count=count, probs=prob )
|
1074 |
+
z_values = tf.linspace(0, 100, 100)
|
1075 |
+
z_values = tf.cast(z_values, tf.float32)
|
1076 |
+
prob_values_p = p.prob(z_values)
|
1077 |
+
prob_values_q = q.prob(z_values)
|
1078 |
+
|
1079 |
+
fig, ax = plt.subplots()
|
1080 |
+
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo')
|
1081 |
+
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go')
|
1082 |
+
|
1083 |
+
ax.set_xlabel("x")
|
1084 |
+
ax.set_ylabel("PMF(x)")
|
1085 |
+
ax.legend()
|
1086 |
+
ax.set_ylim((0, 1))
|
1087 |
+
|
1088 |
+
st.pyplot(fig)
|
1089 |
+
|
1090 |
+
|
1091 |
+
|
1092 |
+
if (add_selectbox == "Continuous Univariate"):
|
1093 |
+
selection1 = st.sidebar.selectbox(
|
1094 |
+
'Choose an Option',
|
1095 |
+
('Beta','Cauchy', 'Chi', 'Chi-Squared', 'Exponential', 'Gamma', 'Laplace', 'Normal',
|
1096 |
+
'Pareto', 'StudentT', 'Uniform', 'Weibull')
|
1097 |
+
)
|
1098 |
+
if (selection1 == "Normal"):
|
1099 |
+
Normal()
|
1100 |
+
elif (selection1 == "Exponential"):
|
1101 |
+
Exponential()
|
1102 |
+
elif(selection1 == "Uniform"):
|
1103 |
+
Uniform()
|
1104 |
+
elif(selection1 == "Error"):
|
1105 |
+
Error()
|
1106 |
+
elif (selection1 == "Cauchy"):
|
1107 |
+
Cauchy()
|
1108 |
+
elif (selection1 == "Chi"):
|
1109 |
+
Chi()
|
1110 |
+
elif (selection1 == "Chi-Squared"):
|
1111 |
+
Chi_squared()
|
1112 |
+
elif (selection1 == "Laplace"):
|
1113 |
+
Laplace()
|
1114 |
+
elif(selection1=="Pareto"):
|
1115 |
+
Pareto()
|
1116 |
+
elif(selection1 == "Weibull"):
|
1117 |
+
Weibull()
|
1118 |
+
elif (selection1 == "Gamma"):
|
1119 |
+
Gamma()
|
1120 |
+
elif (selection1 == "StudentT"):
|
1121 |
+
StudentT()
|
1122 |
+
else:
|
1123 |
+
Beta()
|
1124 |
+
elif (add_selectbox == "Discrete Univariate"):
|
1125 |
+
selection1 = st.sidebar.selectbox(
|
1126 |
+
'Choose an Option',
|
1127 |
+
('Bernoulli', 'Beta-Binomial','Binomial', 'Geometric', 'Negative-Binomial', 'Poisson')
|
1128 |
+
)
|
1129 |
+
if (selection1 == "Poisson"):
|
1130 |
+
Poisson()
|
1131 |
+
elif (selection1 == "Bernoulli"):
|
1132 |
+
Bernoulli_dist()
|
1133 |
+
elif (selection1 == "Binomial"):
|
1134 |
+
Binomial()
|
1135 |
+
elif (selection1 == "Beta-Binomial"):
|
1136 |
+
BetaBinomial()
|
1137 |
+
elif (selection1 == "Geometric"):
|
1138 |
+
Geometric()
|
1139 |
+
elif (selection1 == "Negative-Binomial"):
|
1140 |
+
NegBin()
|