import streamlit as st import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import tensorflow_probability as tfp from math import sqrt from scipy import stats import pandas as pd tfd = tfp.distributions tfl = tfp.layers st.title("Probability Distributions") add_selectbox = st.sidebar.selectbox( 'Choose an Option', ('Discrete Univariate', 'Continuous Univariate') ) # st.title("1 dimensional normal distribution") def Sum(p1val,p2val,zval): l = int(max(max(zval), len(zval))) l=l*2 s=[0]*l for i in range(len(zval)): for j in range(len(zval)): s[int(zval[i]+zval[j])]+=p1val[i]*p2val[j] return s def Product(p1val,p2val,zval): l=int(max(max(zval),len(zval))) l=l**2 s=[0]*l for i in range(len(zval)): for j in range(len(zval)): s[int(zval[i]*zval[j])]+=p1val[i]*p2val[j] return s def Normal(): st.header("Normal distribution") p = tfd.Normal(2, 1) mean = st.slider('Mean', -5, 5, 0) std = st.slider('Scale', 0, 5, 1) z = f"""\\begin{{array}}{{cc}} \mu &= {mean} \\\\ \sigma &= {std} \\end{{array}} """ st.latex(z) st1 = r''' mean= \[\mu\] Variance = \[ \sigma ^2\] Entropy = \[ \frac{1}{2}\log (2 \pi \sigma ^2) + \frac{1}{2} \] ''' st.latex(st1) q=tfd.Normal(mean,std) z_values = tf.linspace(-5, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'Distribution with unknown parameter', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'Distribution with given parameters') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Sum of two Normal Distributions") z_values1 = tf.linspace(-10, 10, 21) z_values1 = tf.cast(z_values1, tf.float32) mean1 = st.slider('Mean1', -5, 5, 0) std1 = st.slider('Std1', 0, 5, 1) mean2 = st.slider('Mean2', -5, 5, 0) std2 = st.slider('Std2', 0, 5, 1) q1=tfd.Normal(mean1,std1) q2=tfd.Normal(mean2,std2) prob_values_q1 = list(q1.prob(z_values1)) prob_values_q2 = list(q2.prob(z_values1)) fig2, (ax2,ax3) = plt.subplots(1,2) ax2.plot(z_values1, prob_values_q1, label=r'Normal(mean1,std1)') ax3.plot(z_values1, prob_values_q2, label=r'Normal(mean2,std2)') ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.set_title("Normal(mean1,std1)") ax2.set_ylim((0, 1)) ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.set_title("Normal(mean2,std2)") ax3.set_ylim((0, 1)) st.pyplot(fig2) prob_values_sum = Sum(prob_values_q1, prob_values_q2, z_values1) q3 = tfd.Normal(mean1+mean2, sqrt(((std1)**2 + (std2)**2))) prob_values_q3 = q3.prob(range(len(prob_values_sum))) fig3, ax4 = plt.subplots() ax4.plot(range(len(prob_values_sum)), prob_values_sum, label=r'Normal(mean1,std1)+Normal(mean2,std2)', linestyle='--', lw=5, alpha=0.5) ax4.plot(range(len(prob_values_sum)), prob_values_q3, label=r'Normal(mean1+mean2, sqrt((std1^2 + std2^2)') ax4.set_xlabel("x") ax4.set_ylabel("PDF(x)") ax4.legend() ax4.set_ylim((0, 1)) st.pyplot(fig3) st.markdown("Sum of two Normal distributions yields a Normal distribution") st.subheader("Relationship between Poisson and Normal Distribution") rate3 = st.slider('lambda1', 100, 500, 250, 50) q4 = tfd.Poisson(rate=rate3) z_values1 = tf.linspace(0, 600, 601) z_values1 = tf.cast(z_values1, tf.float32) prob_values_q4 = list(q4.prob(z_values1)) q5 = tfd.Normal(rate3, sqrt(rate3)) prob_values_q5 = list(q5.prob(z_values1)) fig4, ax5 = plt.subplots() ax5.stem(z_values1, prob_values_q4, label=r'Poisson(lambda1)]', linefmt='r', markerfmt='ro') ax5.plot(z_values1, prob_values_q5, label=r'Normal(lamda1,sqrt(lambda1)', lw=3) ax5.set_xlabel("x") ax5.set_ylabel("PDF(x)") ax5.legend() ax5.set_ylim((0, 0.1)) st.pyplot(fig4) st.markdown("For large values of lambda, Poisson(lambda) becomes approximately a normal distribution having mean= lambda and variance= lambda") def Exponential(): st.subheader("Exponential distribution") p = tfd.Exponential(2) rate = st.slider('Lambda', 1, 5, 1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Exponential(rate) z_values = tf.linspace(-5, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Gamma and Exponential Distribution") alpha1 = 1 st.write("alpha1=1") beta1 = st.slider('beta1', 0.0, 10.0, 5.0, 0.5) q2 = tfd.Gamma(concentration=alpha1, rate=beta1) prob_values_q2 = list(q2.prob(z_values)) q3 = tfd.Exponential(beta1) prob_values_q3 = list(q3.prob(z_values)) fig3, ax3 = plt.subplots() ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Gamma(1,beta)') ax3.plot(z_values, prob_values_q3, label=r'Exponential(beta)') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() # ax3.set_ylim((0, 1)) st.pyplot(fig3) def Uniform(): st.subheader("Uniform distribution") p = tfd.Uniform(0,1) low = st.slider('low', 0, 5, 1) high = st.slider('high', 1, 6, 1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Uniform(low,high) z_values = tf.linspace(-5, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Beta Distribution and Uniform Distribution") st.write("beta = alpha= 1") q4 = tfd.Beta(1, 1) q5 = tfd.Uniform(0, 1) z_values1 = tf.linspace(0, 1, 200) z_values1 = tf.cast(z_values1, tf.float32) prob_values_q4 = list(q4.prob(z_values1)) prob_values_q5 = list(q5.prob(z_values1)) fig3, ax3 = plt.subplots() ax3.plot(z_values1, prob_values_q4, label=r'Beta(1,1)', linestyle='--', lw=3) ax3.plot(z_values1, prob_values_q5, label=r'Uniform(0,1)') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() # ax3.set_ylim((0, 1)) st.pyplot(fig3) def Cauchy(): st.subheader("Cauchy distribution") p = tfd.Cauchy(0, 0.5) loc = st.slider('location', 0.0, 5.0, 1.0, 0.5) sc = st.slider('scale', 0.0, 5.0, 1.0, 0.5) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Cauchy(loc, sc) z_values = tf.linspace(-5, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Cauchy and StudentT Distribution") q2 = tfd.Cauchy(0,1) q3 = tfd.StudentT(1,0,1) prob_values_q2 = list(q2.prob(z_values)) prob_values_q3 = list(q3.prob(z_values)) fig2, ax2 = plt.subplots() ax2.plot(z_values, prob_values_q2, label=r'Cauchy(0,1)', linestyle='--', lw=3) ax2.plot(z_values, prob_values_q3, label=r'StudentT(1,0,1)') ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() ax2.set_ylim((0, 1)) st.pyplot(fig2) def Chi(): st.subheader("Chi distribution") p = tfd.Chi(3) d = st.slider('dof', 0.0, 5.0, 1.0, 0.5) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Chi(d) z_values = tf.linspace(-5, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") #st.subheader("Transformation of Chi Distribution") #d2 = st.slider('dof2', 0, 5, 1, 1) #p1 = tfd.Chi(d2) #prob_values_new = list(p1.prob(z_values)) #z_values2 = np.zeros(len(z_values)) #for i in range(len(z_values2)): # z_values2[i] = z_values[i]**2 #q1 = tfd.Chi2(d2) #new = list(q1.prob(z_values)) # fig2, ax2 = plt.subplots() # ax2.plot(z_values, prob_values_new, label=r'X->Chi(d)', lw=3) # ax2.plot(z_values2, prob_values_new, label=r'X transformed to X^2', lw=2) # ax2.plot(z_values2, new, label=r'Chi2(d)', linestyle='--', lw=2) #ax2.set_xlabel("x") #ax2.set_ylabel("PDF(x)") #ax2.legend() #st.pyplot(fig2) def Chi_squared(): st.subheader("Chi-squared distribution") p = tfd.Chi2(4) dof = st.slider('dof', 0.0, 10.0, 2.0,0.5) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Chi2(dof) z_values = tf.linspace(0, 10, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Chi-Squared and Exponential Distribution") q2 =tfd.Chi2(2) q3 = tfd.Exponential(0.5) prob_values_q2 = list(q2.prob(z_values)) prob_values_q3 = list(q3.prob(z_values)) fig2, ax2 = plt.subplots() ax2.plot(z_values, prob_values_q2, label=r'Chi-Squared(2)', linestyle='--', lw=3) ax2.plot(z_values, prob_values_q3, label=r'Exponential(0.5)') ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() ax2.set_ylim((0, 1)) st.pyplot(fig2) def Laplace(): st.subheader("Laplace distribution") p = tfd.Laplace(0, 3) m = st.slider('mu', 0, 5, 1) s = st.slider('sigma', 0, 5, 1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Laplace(m, s) z_values = tf.linspace(-5, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") def Pareto(): st.subheader("Pareto distribution") p = tfd.Pareto(2, 1) a = st.slider('alpha', 0.0, 5.0, 2.5, 0.5) s = st.slider('scale', 0.0, 5.0, 2.5, 0.5) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Pareto(a, s) z_values = tf.linspace(0, 5, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=2, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") def Weibull(): st.header("Weibull distribution") p = tfd.Weibull(1,2) k = st.slider('k', 0.0, 5.0, 0.5, 0.5) l = st.slider('lambda', 0.0, 5.0, 0.5, 0.5) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Weibull(k, l) z_values = tf.linspace(0, 10, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 2)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Weibull and Exponential Distribution") l1 = st.slider('l', 0.0, 5.0, 1.0, 0.5) k1 = 1 st.write("k=1") q2 = tfd.Weibull(k1, l1) prob_values_q2 = list(q2.prob(z_values)) q3 = tfd.Exponential(1/l1) prob_values_q3 = list(q3.prob(z_values)) fig3, ax3 = plt.subplots() ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Weibull(1,l)') ax3.plot(z_values, prob_values_q3, label=r'Exponential(1/l)') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() ax3.set_ylim((0, 2)) st.pyplot(fig3) def StudentT(): st.subheader("StudentT Distribution") p = tfd.StudentT(1,0,1) df = st.slider('df',0,5,2,1) loc = st.slider('loc', 0, 5, 2, 1) scale = st.slider('scale', 0, 5, 2, 1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.StudentT(df,loc,scale) z_values = tf.linspace(-10, 10 , 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=3, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) st.subheader("Relationship between Cauchy and StudentT Distribution") q2 = tfd.Cauchy(0, 1) q3 = tfd.StudentT(1, 0, 1) prob_values_q2 = list(q2.prob(z_values)) prob_values_q3 = list(q3.prob(z_values)) fig2, ax2 = plt.subplots() ax2.plot(z_values, prob_values_q2, label=r'Cauchy(0,1)', linestyle='--', lw=3) ax2.plot(z_values, prob_values_q3, label=r'StudentT(1,0,1)') ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() ax2.set_ylim((0, 1)) st.pyplot(fig2) def Beta(): st.subheader("Beta distribution") p = tfd.Beta(1.5,1.1) alpha = st.slider('alpha', 0.0, 2.0, 1.2,0.1) beta = st.slider('beta', 0.0, 2.0, 1.2,0.1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Beta(alpha, beta) z_values = tf.linspace(0, 1, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() #ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Beta Distribution and Normal Distribution") alpha1 = st.slider('beta=alpha', 50, 500,250, 50) q2 = tfd.Beta(alpha1, alpha1) q3 = tfd.Normal(0.5,sqrt(0.25/(2*alpha1+1))) z_values1 = tf.linspace(0, 1, 200) z_values1 = tf.cast(z_values1, tf.float32) prob_values_q2 = q2.prob(z_values1) prob_values_q3 = q3.prob(z_values1) fig2, ax2 = plt.subplots() ax2.plot(z_values1, prob_values_q2, label=r'Beta(alpha,Beta)', linestyle='--', lw=3) ax2.plot(z_values1, prob_values_q3, label=r'Normal') ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() #ax2.set_ylim((0, 1)) st.pyplot(fig2) st.subheader("Relationship between Beta Distribution and Uniform Distribution") st.write("beta = alpha= 1") q4 = tfd.Beta(1,1) q5 = tfd.Uniform(0,1) z_values1 = tf.linspace(0, 1, 200) z_values1 = tf.cast(z_values1, tf.float32) prob_values_q4 = list(q4.prob(z_values1)) prob_values_q5 = list(q5.prob(z_values1)) fig3, ax3 = plt.subplots() ax3.plot(z_values1, prob_values_q4, label=r'Beta(1,1)', linestyle='--', lw=3) ax3.plot(z_values1, prob_values_q5, label=r'Uniform(0,1)') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() #ax3.set_ylim((0, 1)) st.pyplot(fig3) st.subheader("Transformation of Beta Distribution") alpha2 = st.slider('alpha2', 0.0, 2.0, 1.2,0.1) beta2 = st.slider('beta2', 0.0, 2.0, 1.8,0.1) p1 = tfd.Beta(alpha2, beta2) prob_values_new = list(p1.prob(z_values)) z_values2 = np.zeros(len(z_values)) for i in range(len(z_values2)): z_values2[i] = 1 - z_values[i] q1 = tfd.Beta(beta2,alpha2) new = list(q1.prob(z_values)) fig2, ax2 = plt.subplots() ax2.plot(z_values, prob_values_new, label=r'X->Beta(alpha,beta)', lw=3) ax2.plot(z_values2, prob_values_new, label=r'X transformed to 1-X', lw=2) ax2.plot(z_values, new, label=r'X->Beta(beta,alpha)', linestyle='--', lw=2) ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() st.pyplot(fig2) def Poisson(): st.subheader("Poisson distribution") p = tfd.Poisson(5) rate = st.slider('lambda', 0, 10, 1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Poisson(rate) z_values = tf.linspace(-2, 10, 13) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='r', markerfmt='ro') ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='--', markerfmt='bo') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) st.subheader("Addition of two Poisson distributions") rate1 = st.slider('lambda1', 0, 10, 1) rate2 = st.slider('lambda2', 0, 10, 1) q1 = tfd.Poisson(rate1) q2 = tfd.Poisson(rate2) prob_values_q1 = list(q1.prob(z_values)) prob_values_q2 = list(q2.prob(z_values)) fig2, (ax2,ax3) = plt.subplots(1,2) ax2.stem(z_values, prob_values_q1, linefmt='r', markerfmt='ro') ax3.stem(z_values, prob_values_q2, linefmt='--', markerfmt='bo') ax2.set_xlabel("x") ax2.set_title("Poisson(lambda1)") ax2.set_ylim((0, 1)) ax3.set_xlabel("x") ax3.set_title("Poisson(lambda2)") ax3.set_ylim((0, 1)) st.pyplot(fig2) prob_values_sum =Sum(prob_values_q1, prob_values_q2, z_values) q3 = tfd.Poisson(rate1+rate2) prob_values_q3 = list(q3.prob(range(len(prob_values_sum)))) fig3, ax4 = plt.subplots() ax4.stem(range(len(prob_values_sum)), prob_values_sum, label=r'Poisson(lambda1)+Poisson(lambda2)', linefmt='r', markerfmt='ro') ax4.stem(range(len(prob_values_sum)), prob_values_q3, linefmt='--', label=r'Poisson(lambda1+lambda2)', markerfmt='bo') ax4.set_xlabel("x") ax4.set_ylabel("PDF(x)") ax4.legend() ax4.set_ylim((0, 1)) st.pyplot(fig3) st.markdown("Summation of two poisson distribution with parameter lamba1 and lambda2 yields Poisson distribution with parameter (lambda1+lambda2)") st.subheader("Relationship between Poisson and Normal Distribution") rate3 = st.slider('lambda1', 100, 500,250,50) q4 = tfd.Poisson(rate=rate3) z_values1 = tf.linspace(0, 600, 601) z_values1 = tf.cast(z_values1, tf.float32) prob_values_q4 = list(q4.prob(z_values1)) q5 = tfd.Normal(rate3, sqrt(rate3)) prob_values_q5 = list(q5.prob(z_values1)) fig4, ax5 = plt.subplots() ax5.stem(z_values1, prob_values_q4, label=r'Poisson(lambda1)]', linefmt='r', markerfmt='ro') ax5.plot(z_values1, prob_values_q5, label=r'Normal(lamda1,sqrt(lambda1)', lw=3) ax5.set_xlabel("x") ax5.set_ylabel("PDF(x)") ax5.legend() ax5.set_ylim((0, 0.1)) st.pyplot(fig4) st.markdown("for large values of lambda, Poisson(lambda) becomes approximately a normal distribution having mean= lambda and variance= lambda") def Binomial(): st.subheader("Binomial distribution") p = tfd.Binomial(total_count=5, probs=.5) count = st.slider('n', 1, 10, 4, 1) prob = st.slider('prob', 0.0, 1.0, 0.5,0.1) st1 = r''' Mean = \[n p \] Variance = \[n p q\] Entropy = \[\frac{1}{2} \log_2 (2 \pi n e p q)\ + O ( \frac {1}{n}) \] ''' st.latex(st1) q = tfd.Binomial(total_count=count, probs=prob ) z_values = tf.linspace(0, 10, 11) z_values = tf.cast(z_values, tf.float32) prob_values_p = list(p.prob(z_values)) prob_values_q = list(q.prob(z_values)) fig, ax = plt.subplots() ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt = 'r', markerfmt = 'ro') ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt ='--', markerfmt = 'bo') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) st.markdown("Relationship between Poisson and Binomial Distribution") count1 = st.slider('n', 750, 1000, 800, 25) prob1 = st.slider('prob', 0.0, 0.010, 0.001, 0.001) t = tfd.Binomial(total_count=count1, probs=prob1) r = tfd.Poisson(count1*prob1) z_values1 = tf.linspace(0, 50, 51) z_values1 = tf.cast(z_values1, tf.float32) prob_values_t = t.prob(z_values1) prob_values_r = r.prob(z_values1) fig1, ax = plt.subplots() ax.stem(z_values1, prob_values_t, label=r'binomial', linefmt='r', markerfmt='ro') ax.stem(z_values1, prob_values_r, label=r'poisson', linefmt='--', markerfmt='bo') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 0.5)) st.pyplot(fig1) st.markdown("") st.markdown("It is clear from the graph, that for large values of n and small values of p, the binomial distribution approximates to poisson distribution.") st.markdown("") st.markdown("Transformation of Binomial Distribution") count2 = st.slider('n1', 1, 10, 4, 1) prob2 = st.slider('p', 0.0, 1.0, 0.5, 0.1) p1 = tfd.Binomial(total_count=count2, probs=prob2) prob_values_n_p = list(p1.prob(z_values)) z_values2=np.zeros(len(z_values)) for i in range(len(z_values2)): z_values2[i]=count2-z_values[i] q1 = tfd.Binomial(total_count=count2, probs=1-prob2) new = list(q1.prob(z_values)) fig2, ax = plt.subplots() ax.stem(z_values, prob_values_n_p, label=r'X->Binomial(n,p)', linefmt='r', markerfmt='ro') ax.stem(z_values2, prob_values_n_p, label=r'X transformed to N-X', linefmt='g', markerfmt='go') ax.stem(z_values, new, label=r'X->Binomial(n,1-p)', linefmt='--', markerfmt='bo') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) ax.set_xlim((-0.5,count2+0.5)) st.pyplot(fig2) st.markdown("When a r.v. X with the binomial(n,p) distribution is transformed to n-X, we get a binomial(n,1-p) distribution.") st.markdown("Relationship between Normal and Binomial Distribution") count3 = st.slider('n3', 750, 1000, 800, 25) prob3 = st.slider('prob3', 0.0, 1.0, 0.5, 0.1) t = tfd.Binomial(total_count=count3, probs=prob3) r = tfd.Normal(count3 * prob3, sqrt((count3*prob3*(1-prob3)))) z_values1 = tf.linspace(0, 1000, 1001) z_values1 = tf.cast(z_values1, tf.float32) prob_values_t = t.prob(z_values1) prob_values_r = r.prob(z_values1) fig2, ax2 = plt.subplots() ax2.stem(z_values1, prob_values_t, label=r'Binomial', linefmt='r', markerfmt='ro') ax2.plot(z_values1, prob_values_r, label=r'Normal', lw=3) ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() ax2.set_ylim((0, 0.1)) st.pyplot(fig2) st.markdown("") st.markdown("For large values of n, the binomial distribution approximates to the normal distribution with mean = n*p and variance = n*p*(1-p)") st.markdown("") def Bernoulli_dist(): st.header("Bernoulli distribution") p = tfd.Bernoulli(probs=0.5) suc = st.slider('p', 0.0, 1.0, 0.8, 0.1) pmf = r''' pmf = f(x) = p \quad \qquad if x=1 \\ \qquad \qquad \quad \,\,\,= 1-p \quad \,\, if x=0 \\ \,\,\,\quad\qquad= 0 \quad\qquad else ''' mean = suc variance = suc*(1-suc) st1 = f''' mean = p = {mean}\\\\ variance = p*(1-p) = {variance:0.3f}\\\\ Entropy = -q lnq - p ln p ''' st.latex(pmf) st.latex(st1) q = tfd.Bernoulli(probs = suc) z_values = tf.linspace(0, 1, 2) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo') ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) st.subheader("Multiplication of two Bernoulli distributions") p1 = st.slider('p1', 0.0, 1.0, 0.2, 0.1) p2 = st.slider('p2', 0.0, 1.0, 0.7, 0.1) rv_p1 = tfd.Bernoulli(probs=p1) rv_p2 = tfd.Bernoulli(probs=p2) prob_values_p1 = rv_p1.prob(z_values) prob_values_p2 = rv_p2.prob(z_values) prob_values_pone = list(prob_values_p1) prob_values_ptwo = list(prob_values_p2) prob_values_pdt = Product(prob_values_pone, prob_values_ptwo, z_values) fig1,(ax1,ax2)=plt.subplots(1,2) ax1.stem(z_values, prob_values_p1, label=r'p1', linefmt='b', markerfmt='bo') ax2.stem(z_values, prob_values_p2, label=r'p2', linefmt='g', markerfmt='go') ax1.set_title("Bernoulli(p1)") ax1.set_xlabel("x") ax1.set_ylabel("PDF(x)") ax1.set_ylim((0, 1)) ax2.set_title("Bernoulli(p2)") ax2.set_xlabel("x") ax2.set_ylim((0, 1)) st.pyplot(fig1) rv_p1p2 = tfd.Bernoulli(probs=p1*p2) prob_values_p1p2 = rv_p1p2.prob(range(len(prob_values_pdt))) fig2, ax3 = plt.subplots() ax3.stem(range(len(prob_values_pdt)), prob_values_pdt, label=r'Product of Bernoulli(p1) and Bernoulli(p2)', linefmt='r', markerfmt='ro') ax3.stem(range(len(prob_values_pdt)), prob_values_p1p2, label=r'Bernoulli(p1*p2)', linefmt='--', markerfmt='bo') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() ax3.set_ylim((0, 1)) ax3.set_xlim((-0.5, 1.5)) st.pyplot(fig2) st.markdown("Multiplication of a Bernoulli(p1) distribution with Bernouli(p2) gives a Bernoulli distribution with parameter=p1*p2") st.subheader("Addition of two Bernoulli distributions") p3 = st.slider('p3', 0.0, 1.0, 0.6, 0.1) rv_p3 = tfd.Bernoulli(probs=p3) prob_values_p3 = list(rv_p3.prob(z_values)) prob_values_sum=Sum(prob_values_p3, prob_values_p3, z_values) fig3, ax4 = plt.subplots() ax4.stem(range(len(prob_values_sum)), prob_values_sum, label=r'Sum of 2 Bernoulli(p3) distributions', linefmt='r', markerfmt='ro') b = tfd.Binomial(total_count=2, probs=p3) prob_values_bin = list(b.prob(range(len(prob_values_sum)))) ax4.stem(range(len(prob_values_sum)), prob_values_bin, label=r'Binomial(2,p3)', linefmt='--', markerfmt='bo') ax4.set_xlabel("x") ax4.set_ylabel("PDF(x)") ax4.legend() ax4.set_ylim((0, 1)) st.pyplot(fig3) st.markdown("The sum of n Bernoulli(p) distributions is a binomial(n,p) distribution") def BetaBinomial(): st.markdown("Beta Binomial distribution") p = tfd.BetaBinomial(8,0.5,1.2) num = st.slider('n', 0, 10, 5, 1) al = st.slider('alpha', 0.0, 5.0, 0.2, 0.1) be = st.slider('beta', 0.0, 5.0, 0.2, 0.1) st1 = r''' Mean = \[ \frac {n \alpha}{\alpha + \beta} \] Variance = \[ \frac {(n \alpha \beta)(\alpha + \beta + n)}{(\alpha + \beta + 1) (\alpha + \beta)^2} \] ''' st.latex(st1) q = tfd.BetaBinomial(num, al, be) z_values = tf.linspace(0, 10, 11) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='r', markerfmt='ro') ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='--', markerfmt='bo') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) st.markdown("") st.markdown("Relarionship between BetaBinomial and Uniform-Discrete Distribution") st.markdown("") num2 = st.slider('n2', 0, 10, 5, 1) q2 = tfd.BetaBinomial(num2, 1, 1) prob_values_q2 = q2.prob(z_values) fig2, ax2 = plt.subplots() ax2.stem(z_values, prob_values_q2, label=r'BetaBinomial(n,1,1)', linefmt='r', markerfmt='ro') ax2.set_xlabel("x") ax2.set_ylabel("PDF(x)") ax2.legend() ax2.set_ylim((0, 1)) st.pyplot(fig2) st.markdown("A BetaBinomial(n,alpha,beta) with alpha=beta=1 becomes a uniform-discrete distribution from 0 to n(n2 here)") st.markdown("") st.markdown("Relationship between Binomial and BetaBinomial Distribution") num3 = st.slider('_n', 0, 10, 5, 1) al2 = st.slider('_alpha', 100, 500, 200, 50) be2 = st.slider('_beta', 100, 500, 200, 50) q3 = tfd.BetaBinomial(num3, al2, be2) prob_values_q3 = q3.prob(z_values) success = al2/(al2+be2) q4 = tfd.Binomial(total_count=num3, probs=success) prob_values_q4 = q4.prob(z_values) fig3, ax3 = plt.subplots() ax3.stem(z_values, prob_values_q3, label=r'BetaBinomial', linefmt='r', markerfmt='ro') ax3.stem(z_values, prob_values_q4, label=r'Binomial', linefmt='--', markerfmt='bo') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() ax3.set_ylim((0, 1)) st.pyplot(fig3) st.markdown("For large values of (alpha+beta), the BetaBinomial approximates to the Binomial Distribution with the probanility of success = alpha/(alpha+beta)") st.markdown("") def Geometric(): st.subheader("Geometric distribution") p = tfd.Geometric(probs=0.2) prob = st.slider('prob', 0.0, 1.0, 0.4, 0.1) st1 = r''' Mean=\[ \frac {1}{p} \] Variance= \[ \frac {1-p}{p^2} \] Entropy = \[ \frac { -(1-p) \log_2 {(1-p)} - p \log_2 p} {p}\] ''' st.latex(st1) q = tfd.Geometric(probs=prob) z_values = tf.linspace(0, 10, 11) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo') ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go') ax.set_xlabel("x") ax.set_ylabel("PMF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) def Gamma(): st.subheader("Gamma distribution") p = tfd.Gamma(concentration = 3.5, rate = 3 ) concn = st.slider('concentration', 0.0, 10.0, 5.0, 0.5) rat = st.slider('rate', 0.0, 10.0, 2.0, 0.5) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.Gamma(concentration = concn, rate = rat ) z_values = tf.linspace(0, 20, 200) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) ax.plot(z_values, prob_values_q, label=r'q') ax.set_xlabel("x") ax.set_ylabel("PDF(x)") ax.legend() #ax.set_ylim((0, 1)) st.pyplot(fig) kl = tfd.kl_divergence(q, p) st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") st.subheader("Relationship between Gamma and Exponential Distribution") alpha1=1 st.write("alpha1=1") beta1 = st.slider('beta1', 0.0, 10.0, 5.0, 0.5) q2 = tfd.Gamma(concentration=alpha1, rate=beta1) prob_values_q2 = list(q2.prob(z_values)) q3 = tfd.Exponential(beta1) prob_values_q3 = list(q3.prob(z_values)) fig3, ax3 = plt.subplots() ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Gamma(1,beta)') ax3.plot(z_values, prob_values_q3, label=r'Exponential(beta)') ax3.set_xlabel("x") ax3.set_ylabel("PDF(x)") ax3.legend() #ax3.set_ylim((0, 1)) st.pyplot(fig3) def NegBin(): st.markdown("Negative Binomial distribution") p = tfd.NegativeBinomial(total_count=5, probs=.5) count = st.slider('n', 1, 10, 1) prob = st.slider('prob', 0.0, 1.0, 0.1) cdf = r''' cdf = $\int_a^b f(x)dx$ ''' st.latex(cdf) q = tfd.NegativeBinomial(total_count=count, probs=prob ) z_values = tf.linspace(0, 100, 100) z_values = tf.cast(z_values, tf.float32) prob_values_p = p.prob(z_values) prob_values_q = q.prob(z_values) fig, ax = plt.subplots() ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo') ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go') ax.set_xlabel("x") ax.set_ylabel("PMF(x)") ax.legend() ax.set_ylim((0, 1)) st.pyplot(fig) if (add_selectbox == "Continuous Univariate"): selection1 = st.sidebar.selectbox( 'Choose an Option', ('Beta','Cauchy', 'Chi', 'Chi-Squared', 'Exponential', 'Gamma', 'Laplace', 'Normal', 'Pareto', 'StudentT', 'Uniform', 'Weibull') ) if (selection1 == "Normal"): Normal() elif (selection1 == "Exponential"): Exponential() elif(selection1 == "Uniform"): Uniform() elif(selection1 == "Error"): Error() elif (selection1 == "Cauchy"): Cauchy() elif (selection1 == "Chi"): Chi() elif (selection1 == "Chi-Squared"): Chi_squared() elif (selection1 == "Laplace"): Laplace() elif(selection1=="Pareto"): Pareto() elif(selection1 == "Weibull"): Weibull() elif (selection1 == "Gamma"): Gamma() elif (selection1 == "StudentT"): StudentT() else: Beta() elif (add_selectbox == "Discrete Univariate"): selection1 = st.sidebar.selectbox( 'Choose an Option', ('Bernoulli', 'Beta-Binomial','Binomial', 'Geometric', 'Negative-Binomial', 'Poisson') ) if (selection1 == "Poisson"): Poisson() elif (selection1 == "Bernoulli"): Bernoulli_dist() elif (selection1 == "Binomial"): Binomial() elif (selection1 == "Beta-Binomial"): BetaBinomial() elif (selection1 == "Geometric"): Geometric() elif (selection1 == "Negative-Binomial"): NegBin()