import streamlit as st import tensorflow as tf import numpy as np from PIL import Image # Load the trained model model_path = "flower-model-ResNet50.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_flower(image): # Preprocess image image = image.resize((150, 150)) # Resize the image to 150x150 image = image.convert('RGB') # Ensure image has 3 channels image = np.array(image) / 255.0 # Normalize the image to [0, 1] image = np.expand_dims(image, axis=0) # Add batch dimension # Predict prediction = model.predict(image) # Apply softmax to get probabilities for each class probabilities = tf.nn.softmax(prediction, axis=1) # Map probabilities to Flower classes class_names = ['daisy', 'dandelion', 'rose', 'sunflower', 'tulip'] probabilities_dict = {flower_class: round(float(probability), 2) for flower_class, probability in zip(class_names, probabilities.numpy()[0])} return probabilities_dict # Streamlit interface st.title("Der Bluemenerkenner") st.write("Welche Blume wächst in ihrem Garten?") # Upload image uploaded_image = st.file_uploader("Lade dein Bild hoch...", type=["jpg", "png"]) if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption='Hochgeladenes Bild.', use_column_width=True) st.write("") st.write("Identifizieren...") predictions = predict_flower(image) # Log the predictions st.write("Vorhersagen für jede Klasse:") for flower_class, probability in predictions.items(): st.write(f"{flower_class}: {probability}") # Find the flower with the highest probability highest_probability_flower = max(predictions, key=predictions.get) # Display the flower with the highest probability st.write(f"Es ist eine: **{highest_probability_flower}**")