|
import streamlit as st |
|
import tensorflow as tf |
|
import numpy as np |
|
from PIL import Image |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
model_path = "pokemon-model_transferlearning1.keras" |
|
model = tf.keras.models.load_model(model_path) |
|
|
|
|
|
def predict_pokemon(image): |
|
|
|
image = image.resize((150, 150)) |
|
image = image.convert('RGB') |
|
image = np.array(image) |
|
image = np.expand_dims(image, axis=0) |
|
|
|
|
|
prediction = model.predict(image) |
|
|
|
|
|
probabilities = tf.nn.softmax(prediction, axis=1) |
|
|
|
|
|
class_names = ['Chansey', 'Growlithe', 'Lapras'] |
|
probabilities_dict = {pokemon_class: round(float(probability), 2) for pokemon_class, probability in zip(class_names, probabilities.numpy()[0])} |
|
|
|
return probabilities_dict |
|
|
|
|
|
st.title("Pokemon Classifier") |
|
st.write("Welches Pokemon hast du ausgewählt?") |
|
|
|
|
|
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"]) |
|
|
|
if uploaded_image is not None: |
|
image = Image.open(uploaded_image) |
|
st.image(image, caption='Uploaded Image.', use_column_width=True) |
|
st.write("") |
|
st.write("Classifying...") |
|
|
|
predictions = predict_pokemon(image) |
|
|
|
|
|
st.write("### Prediction Probabilities") |
|
df = pd.DataFrame(predictions.items(), columns=["Pokemon", "Probability"]) |
|
st.dataframe(df) |
|
|
|
|
|
st.write("### Prediction Chart") |
|
fig, ax = plt.subplots() |
|
ax.barh(df["Pokemon"], df["Probability"], color='skyblue') |
|
ax.set_xlim(0, 1) |
|
ax.set_xlabel('Probability') |
|
ax.set_title('Prediction Probabilities') |
|
st.pyplot(fig) |
|
|
|
|
|
st.sidebar.title("Examples") |
|
example_images = ["pokemon/00000000.png","pokemon/00000001.png","pokemon/00000002.png"] |
|
for example_image in example_images: |
|
st.sidebar.image(example_image, use_column_width=True) |
|
|