File size: 22,144 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import torch
from torch.nn.utils.rnn import pad_sequence
import json
import os
import numpy as np
import librosa
from utils.data_utils import *
from processors.acoustic_extractor import cal_normalized_mel, load_mel_extrema
from processors.content_extractor import (
ContentvecExtractor,
WhisperExtractor,
WenetExtractor,
)
from models.base.base_dataset import (
BaseOfflineDataset,
BaseOfflineCollator,
BaseOnlineDataset,
BaseOnlineCollator,
)
from models.base.new_dataset import BaseTestDataset
EPS = 1.0e-12
class SVCOfflineDataset(BaseOfflineDataset):
def __init__(self, cfg, dataset, is_valid=False):
BaseOfflineDataset.__init__(self, cfg, dataset, is_valid=is_valid)
cfg = self.cfg
if cfg.model.condition_encoder.use_whisper:
self.whisper_aligner = WhisperExtractor(self.cfg)
self.utt2whisper_path = load_content_feature_path(
self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.whisper_dir
)
if cfg.model.condition_encoder.use_contentvec:
self.contentvec_aligner = ContentvecExtractor(self.cfg)
self.utt2contentVec_path = load_content_feature_path(
self.metadata,
cfg.preprocess.processed_dir,
cfg.preprocess.contentvec_dir,
)
if cfg.model.condition_encoder.use_mert:
self.utt2mert_path = load_content_feature_path(
self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.mert_dir
)
if cfg.model.condition_encoder.use_wenet:
self.wenet_aligner = WenetExtractor(self.cfg)
self.utt2wenet_path = load_content_feature_path(
self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.wenet_dir
)
def __getitem__(self, index):
single_feature = BaseOfflineDataset.__getitem__(self, index)
utt_info = self.metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
if self.cfg.model.condition_encoder.use_whisper:
assert "target_len" in single_feature.keys()
aligned_whisper_feat = (
self.whisper_aligner.offline_resolution_transformation(
np.load(self.utt2whisper_path[utt]), single_feature["target_len"]
)
)
single_feature["whisper_feat"] = aligned_whisper_feat
if self.cfg.model.condition_encoder.use_contentvec:
assert "target_len" in single_feature.keys()
aligned_contentvec = (
self.contentvec_aligner.offline_resolution_transformation(
np.load(self.utt2contentVec_path[utt]), single_feature["target_len"]
)
)
single_feature["contentvec_feat"] = aligned_contentvec
if self.cfg.model.condition_encoder.use_mert:
assert "target_len" in single_feature.keys()
aligned_mert_feat = align_content_feature_length(
np.load(self.utt2mert_path[utt]),
single_feature["target_len"],
source_hop=self.cfg.preprocess.mert_hop_size,
)
single_feature["mert_feat"] = aligned_mert_feat
if self.cfg.model.condition_encoder.use_wenet:
assert "target_len" in single_feature.keys()
aligned_wenet_feat = self.wenet_aligner.offline_resolution_transformation(
np.load(self.utt2wenet_path[utt]), single_feature["target_len"]
)
single_feature["wenet_feat"] = aligned_wenet_feat
# print(single_feature.keys())
# for k, v in single_feature.items():
# if type(v) in [torch.Tensor, np.ndarray]:
# print(k, v.shape)
# else:
# print(k, v)
# exit()
return self.clip_if_too_long(single_feature)
def __len__(self):
return len(self.metadata)
def random_select(self, feature_seq_len, max_seq_len, ending_ts=2812):
"""
ending_ts: to avoid invalid whisper features for over 30s audios
2812 = 30 * 24000 // 256
"""
ts = max(feature_seq_len - max_seq_len, 0)
ts = min(ts, ending_ts - max_seq_len)
start = random.randint(0, ts)
end = start + max_seq_len
return start, end
def clip_if_too_long(self, sample, max_seq_len=512):
"""
sample :
{
'spk_id': (1,),
'target_len': int
'mel': (seq_len, dim),
'frame_pitch': (seq_len,)
'frame_energy': (seq_len,)
'content_vector_feat': (seq_len, dim)
}
"""
if sample["target_len"] <= max_seq_len:
return sample
start, end = self.random_select(sample["target_len"], max_seq_len)
sample["target_len"] = end - start
for k in sample.keys():
if k == "audio":
# audio should be clipped in hop_size scale
sample[k] = sample[k][
start
* self.cfg.preprocess.hop_size : end
* self.cfg.preprocess.hop_size
]
elif k == "audio_len":
sample[k] = (end - start) * self.cfg.preprocess.hop_size
elif k not in ["spk_id", "target_len"]:
sample[k] = sample[k][start:end]
return sample
class SVCOnlineDataset(BaseOnlineDataset):
def __init__(self, cfg, dataset, is_valid=False):
super().__init__(cfg, dataset, is_valid=is_valid)
# Audio pretrained models' sample rates
self.all_sample_rates = {self.sample_rate}
if self.cfg.model.condition_encoder.use_whisper:
self.all_sample_rates.add(self.cfg.preprocess.whisper_sample_rate)
if self.cfg.model.condition_encoder.use_contentvec:
self.all_sample_rates.add(self.cfg.preprocess.contentvec_sample_rate)
if self.cfg.model.condition_encoder.use_wenet:
self.all_sample_rates.add(self.cfg.preprocess.wenet_sample_rate)
self.highest_sample_rate = max(list(self.all_sample_rates))
# The maximum duration (seconds) for one training sample
self.max_duration = 6.0
self.max_n_frames = int(self.max_duration * self.highest_sample_rate)
def random_select(self, wav, duration, wav_path):
"""
wav: (T,)
"""
if duration <= self.max_duration:
return wav
ts_frame = int((duration - self.max_duration) * self.highest_sample_rate)
start = random.randint(0, ts_frame)
end = start + self.max_n_frames
if (wav[start:end] == 0).all():
print("*" * 20)
print("Warning! The wav file {} has a lot of silience.".format(wav_path))
# There should be at least some frames that are not silience. Then we select them.
assert (wav != 0).any()
start = np.where(wav != 0)[0][0]
end = start + self.max_n_frames
return wav[start:end]
def __getitem__(self, index):
"""
single_feature: dict,
wav: (T,)
wav_len: int
target_len: int
mask: (n_frames, 1)
spk_id
wav_{sr}: (T,)
wav_{sr}_len: int
"""
single_feature = dict()
utt_item = self.metadata[index]
wav_path = utt_item["Path"]
### Use the highest sampling rate to load and randomly select ###
highest_sr_wav, _ = librosa.load(wav_path, sr=self.highest_sample_rate)
highest_sr_wav = self.random_select(
highest_sr_wav, utt_item["Duration"], wav_path
)
### Waveforms under all the sample rates ###
for sr in self.all_sample_rates:
# Resample to the required sample rate
if sr != self.highest_sample_rate:
wav_sr = librosa.resample(
highest_sr_wav, orig_sr=self.highest_sample_rate, target_sr=sr
)
else:
wav_sr = highest_sr_wav
wav_sr = torch.as_tensor(wav_sr, dtype=torch.float32)
single_feature["wav_{}".format(sr)] = wav_sr
single_feature["wav_{}_len".format(sr)] = len(wav_sr)
# For target sample rate
if sr == self.sample_rate:
wav_len = len(wav_sr)
frame_len = wav_len // self.hop_size
single_feature["wav"] = wav_sr
single_feature["wav_len"] = wav_len
single_feature["target_len"] = frame_len
single_feature["mask"] = torch.ones(frame_len, 1, dtype=torch.long)
### Speaker ID ###
if self.cfg.preprocess.use_spkid:
utt = "{}_{}".format(utt_item["Dataset"], utt_item["Uid"])
single_feature["spk_id"] = torch.tensor(
[self.spk2id[self.utt2spk[utt]]], dtype=torch.int32
)
return single_feature
def __len__(self):
return len(self.metadata)
class SVCOfflineCollator(BaseOfflineCollator):
def __init__(self, cfg):
super().__init__(cfg)
def __call__(self, batch):
parsed_batch_features = super().__call__(batch)
return parsed_batch_features
class SVCOnlineCollator(BaseOnlineCollator):
def __init__(self, cfg):
super().__init__(cfg)
def __call__(self, batch):
"""
SVCOnlineDataset.__getitem__:
wav: (T,)
wav_len: int
target_len: int
mask: (n_frames, 1)
spk_id: (1)
wav_{sr}: (T,)
wav_{sr}_len: int
Returns:
wav: (B, T), torch.float32
wav_len: (B), torch.long
target_len: (B), torch.long
mask: (B, n_frames, 1), torch.long
spk_id: (B, 1), torch.int32
wav_{sr}: (B, T)
wav_{sr}_len: (B), torch.long
"""
packed_batch_features = dict()
for key in batch[0].keys():
if "_len" in key:
packed_batch_features[key] = torch.LongTensor([b[key] for b in batch])
else:
packed_batch_features[key] = pad_sequence(
[b[key] for b in batch], batch_first=True, padding_value=0
)
return packed_batch_features
class SVCTestDataset(BaseTestDataset):
def __init__(self, args, cfg, infer_type):
BaseTestDataset.__init__(self, args, cfg, infer_type)
self.metadata = self.get_metadata()
target_singer = args.target_singer
self.cfg = cfg
self.trans_key = args.trans_key
assert type(target_singer) == str
self.target_singer = target_singer.split("_")[-1]
self.target_dataset = target_singer.replace(
"_{}".format(self.target_singer), ""
)
if cfg.preprocess.mel_min_max_norm:
if self.cfg.preprocess.features_extraction_mode == "online":
# TODO: Change the hard code
# Using an empirical mel extrema to normalize
self.target_mel_extrema = load_mel_extrema(cfg.preprocess, "vctk")
else:
self.target_mel_extrema = load_mel_extrema(
cfg.preprocess, self.target_dataset
)
self.target_mel_extrema = torch.as_tensor(
self.target_mel_extrema[0]
), torch.as_tensor(self.target_mel_extrema[1])
######### Load source acoustic features #########
if cfg.preprocess.use_spkid:
spk2id_path = os.path.join(args.acoustics_dir, cfg.preprocess.spk2id)
# utt2sp_path = os.path.join(self.data_root, cfg.preprocess.utt2spk)
with open(spk2id_path, "r", encoding="utf-8") as f:
self.spk2id = json.load(f)
# print("self.spk2id", self.spk2id)
if cfg.preprocess.use_uv:
self.utt2uv_path = {
f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
cfg.preprocess.processed_dir,
utt_info["Dataset"],
cfg.preprocess.uv_dir,
utt_info["Uid"] + ".npy",
)
for utt_info in self.metadata
}
if cfg.preprocess.use_frame_pitch:
self.utt2frame_pitch_path = {
f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
cfg.preprocess.processed_dir,
utt_info["Dataset"],
cfg.preprocess.pitch_dir,
utt_info["Uid"] + ".npy",
)
for utt_info in self.metadata
}
# Target F0 median
target_f0_statistics_path = os.path.join(
cfg.preprocess.processed_dir,
self.target_dataset,
cfg.preprocess.pitch_dir,
"statistics.json",
)
self.target_pitch_median = json.load(
open(target_f0_statistics_path, "r", encoding="utf-8")
)[f"{self.target_dataset}_{self.target_singer}"]["voiced_positions"][
"median"
]
# Source F0 median (if infer from file)
if infer_type == "from_file":
source_audio_name = cfg.inference.source_audio_name
source_f0_statistics_path = os.path.join(
cfg.preprocess.processed_dir,
source_audio_name,
cfg.preprocess.pitch_dir,
"statistics.json",
)
self.source_pitch_median = json.load(
open(source_f0_statistics_path, "r", encoding="utf-8")
)[f"{source_audio_name}_{source_audio_name}"]["voiced_positions"][
"median"
]
else:
self.source_pitch_median = None
if cfg.preprocess.use_frame_energy:
self.utt2frame_energy_path = {
f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
cfg.preprocess.processed_dir,
utt_info["Dataset"],
cfg.preprocess.energy_dir,
utt_info["Uid"] + ".npy",
)
for utt_info in self.metadata
}
if cfg.preprocess.use_mel:
self.utt2mel_path = {
f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
cfg.preprocess.processed_dir,
utt_info["Dataset"],
cfg.preprocess.mel_dir,
utt_info["Uid"] + ".npy",
)
for utt_info in self.metadata
}
######### Load source content features' path #########
if cfg.model.condition_encoder.use_whisper:
self.whisper_aligner = WhisperExtractor(cfg)
self.utt2whisper_path = load_content_feature_path(
self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.whisper_dir
)
if cfg.model.condition_encoder.use_contentvec:
self.contentvec_aligner = ContentvecExtractor(cfg)
self.utt2contentVec_path = load_content_feature_path(
self.metadata,
cfg.preprocess.processed_dir,
cfg.preprocess.contentvec_dir,
)
if cfg.model.condition_encoder.use_mert:
self.utt2mert_path = load_content_feature_path(
self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.mert_dir
)
if cfg.model.condition_encoder.use_wenet:
self.wenet_aligner = WenetExtractor(cfg)
self.utt2wenet_path = load_content_feature_path(
self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.wenet_dir
)
def __getitem__(self, index):
single_feature = {}
utt_info = self.metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
source_dataset = self.metadata[index]["Dataset"]
if self.cfg.preprocess.use_spkid:
single_feature["spk_id"] = np.array(
[self.spk2id[f"{self.target_dataset}_{self.target_singer}"]],
dtype=np.int32,
)
######### Get Acoustic Features Item #########
if self.cfg.preprocess.use_mel:
mel = np.load(self.utt2mel_path[utt])
assert mel.shape[0] == self.cfg.preprocess.n_mel # [n_mels, T]
if self.cfg.preprocess.use_min_max_norm_mel:
# mel norm
mel = cal_normalized_mel(mel, source_dataset, self.cfg.preprocess)
if "target_len" not in single_feature.keys():
single_feature["target_len"] = mel.shape[1]
single_feature["mel"] = mel.T # [T, n_mels]
if self.cfg.preprocess.use_frame_pitch:
frame_pitch_path = self.utt2frame_pitch_path[utt]
frame_pitch = np.load(frame_pitch_path)
if self.trans_key:
try:
self.trans_key = int(self.trans_key)
except:
pass
if type(self.trans_key) == int:
frame_pitch = transpose_key(frame_pitch, self.trans_key)
elif self.trans_key:
assert self.target_singer
frame_pitch = pitch_shift_to_target(
frame_pitch, self.target_pitch_median, self.source_pitch_median
)
if "target_len" not in single_feature.keys():
single_feature["target_len"] = len(frame_pitch)
aligned_frame_pitch = align_length(
frame_pitch, single_feature["target_len"]
)
single_feature["frame_pitch"] = aligned_frame_pitch
if self.cfg.preprocess.use_uv:
frame_uv_path = self.utt2uv_path[utt]
frame_uv = np.load(frame_uv_path)
aligned_frame_uv = align_length(frame_uv, single_feature["target_len"])
aligned_frame_uv = [
0 if frame_uv else 1 for frame_uv in aligned_frame_uv
]
aligned_frame_uv = np.array(aligned_frame_uv)
single_feature["frame_uv"] = aligned_frame_uv
if self.cfg.preprocess.use_frame_energy:
frame_energy_path = self.utt2frame_energy_path[utt]
frame_energy = np.load(frame_energy_path)
if "target_len" not in single_feature.keys():
single_feature["target_len"] = len(frame_energy)
aligned_frame_energy = align_length(
frame_energy, single_feature["target_len"]
)
single_feature["frame_energy"] = aligned_frame_energy
######### Get Content Features Item #########
if self.cfg.model.condition_encoder.use_whisper:
assert "target_len" in single_feature.keys()
aligned_whisper_feat = (
self.whisper_aligner.offline_resolution_transformation(
np.load(self.utt2whisper_path[utt]), single_feature["target_len"]
)
)
single_feature["whisper_feat"] = aligned_whisper_feat
if self.cfg.model.condition_encoder.use_contentvec:
assert "target_len" in single_feature.keys()
aligned_contentvec = (
self.contentvec_aligner.offline_resolution_transformation(
np.load(self.utt2contentVec_path[utt]), single_feature["target_len"]
)
)
single_feature["contentvec_feat"] = aligned_contentvec
if self.cfg.model.condition_encoder.use_mert:
assert "target_len" in single_feature.keys()
aligned_mert_feat = align_content_feature_length(
np.load(self.utt2mert_path[utt]),
single_feature["target_len"],
source_hop=self.cfg.preprocess.mert_hop_size,
)
single_feature["mert_feat"] = aligned_mert_feat
if self.cfg.model.condition_encoder.use_wenet:
assert "target_len" in single_feature.keys()
aligned_wenet_feat = self.wenet_aligner.offline_resolution_transformation(
np.load(self.utt2wenet_path[utt]), single_feature["target_len"]
)
single_feature["wenet_feat"] = aligned_wenet_feat
return single_feature
def __len__(self):
return len(self.metadata)
class SVCTestCollator:
"""Zero-pads model inputs and targets based on number of frames per step"""
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, batch):
packed_batch_features = dict()
# mel: [b, T, n_mels]
# frame_pitch, frame_energy: [1, T]
# target_len: [1]
# spk_id: [b, 1]
# mask: [b, T, 1]
for key in batch[0].keys():
if key == "target_len":
packed_batch_features["target_len"] = torch.LongTensor(
[b["target_len"] for b in batch]
)
masks = [
torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
]
packed_batch_features["mask"] = pad_sequence(
masks, batch_first=True, padding_value=0
)
else:
values = [torch.from_numpy(b[key]) for b in batch]
packed_batch_features[key] = pad_sequence(
values, batch_first=True, padding_value=0
)
return packed_batch_features
|