File size: 9,196 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import torch
import torch.nn as nn
import numpy as np
from models.base.new_trainer import BaseTrainer
from models.svc.base.svc_dataset import (
SVCOfflineCollator,
SVCOfflineDataset,
SVCOnlineCollator,
SVCOnlineDataset,
)
from processors.audio_features_extractor import AudioFeaturesExtractor
from processors.acoustic_extractor import cal_normalized_mel, load_mel_extrema
EPS = 1.0e-12
class SVCTrainer(BaseTrainer):
r"""The base trainer for all SVC models. It inherits from BaseTrainer and implements
``build_criterion``, ``_build_dataset`` and ``_build_singer_lut`` methods. You can inherit from this
class, and implement ``_build_model``, ``_forward_step``.
"""
def __init__(self, args=None, cfg=None):
self.args = args
self.cfg = cfg
self._init_accelerator()
# Only for SVC tasks
with self.accelerator.main_process_first():
self.singers = self._build_singer_lut()
# Super init
BaseTrainer.__init__(self, args, cfg)
# Only for SVC tasks
self.task_type = "SVC"
self.logger.info("Task type: {}".format(self.task_type))
### Following are methods only for SVC tasks ###
def _build_dataset(self):
self.online_features_extraction = (
self.cfg.preprocess.features_extraction_mode == "online"
)
if not self.online_features_extraction:
return SVCOfflineDataset, SVCOfflineCollator
else:
self.audio_features_extractor = AudioFeaturesExtractor(self.cfg)
return SVCOnlineDataset, SVCOnlineCollator
def _extract_svc_features(self, batch):
"""
Features extraction during training
Batch:
wav: (B, T)
wav_len: (B)
target_len: (B)
mask: (B, n_frames, 1)
spk_id: (B, 1)
wav_{sr}: (B, T)
wav_{sr}_len: (B)
Added elements when output:
mel: (B, n_frames, n_mels)
frame_pitch: (B, n_frames)
frame_uv: (B, n_frames)
frame_energy: (B, n_frames)
frame_{content}: (B, n_frames, D)
"""
padded_n_frames = torch.max(batch["target_len"])
final_n_frames = padded_n_frames
### Mel Spectrogram ###
if self.cfg.preprocess.use_mel:
# (B, n_mels, n_frames)
raw_mel = self.audio_features_extractor.get_mel_spectrogram(batch["wav"])
if self.cfg.preprocess.use_min_max_norm_mel:
# TODO: Change the hard code
# Using the empirical mel extrema to denormalize
if not hasattr(self, "mel_extrema"):
# (n_mels)
m, M = load_mel_extrema(self.cfg.preprocess, "vctk")
# (1, n_mels, 1)
m = (
torch.as_tensor(m, device=raw_mel.device)
.unsqueeze(0)
.unsqueeze(-1)
)
M = (
torch.as_tensor(M, device=raw_mel.device)
.unsqueeze(0)
.unsqueeze(-1)
)
self.mel_extrema = m, M
m, M = self.mel_extrema
mel = (raw_mel - m) / (M - m + EPS) * 2 - 1
else:
mel = raw_mel
final_n_frames = min(final_n_frames, mel.size(-1))
# (B, n_frames, n_mels)
batch["mel"] = mel.transpose(1, 2)
else:
raw_mel = None
### F0 ###
if self.cfg.preprocess.use_frame_pitch:
# (B, n_frames)
raw_f0, raw_uv = self.audio_features_extractor.get_f0(
batch["wav"],
wav_lens=batch["wav_len"],
use_interpolate=self.cfg.preprocess.use_interpolation_for_uv,
return_uv=True,
)
final_n_frames = min(final_n_frames, raw_f0.size(-1))
batch["frame_pitch"] = raw_f0
if self.cfg.preprocess.use_uv:
batch["frame_uv"] = raw_uv
### Energy ###
if self.cfg.preprocess.use_frame_energy:
# (B, n_frames)
raw_energy = self.audio_features_extractor.get_energy(
batch["wav"], mel_spec=raw_mel
)
final_n_frames = min(final_n_frames, raw_energy.size(-1))
batch["frame_energy"] = raw_energy
### Semantic Features ###
if self.cfg.model.condition_encoder.use_whisper:
# (B, n_frames, D)
whisper_feats = self.audio_features_extractor.get_whisper_features(
wavs=batch["wav_{}".format(self.cfg.preprocess.whisper_sample_rate)],
target_frame_len=padded_n_frames,
)
final_n_frames = min(final_n_frames, whisper_feats.size(1))
batch["whisper_feat"] = whisper_feats
if self.cfg.model.condition_encoder.use_contentvec:
# (B, n_frames, D)
contentvec_feats = self.audio_features_extractor.get_contentvec_features(
wavs=batch["wav_{}".format(self.cfg.preprocess.contentvec_sample_rate)],
target_frame_len=padded_n_frames,
)
final_n_frames = min(final_n_frames, contentvec_feats.size(1))
batch["contentvec_feat"] = contentvec_feats
if self.cfg.model.condition_encoder.use_wenet:
# (B, n_frames, D)
wenet_feats = self.audio_features_extractor.get_wenet_features(
wavs=batch["wav_{}".format(self.cfg.preprocess.wenet_sample_rate)],
target_frame_len=padded_n_frames,
wav_lens=batch[
"wav_{}_len".format(self.cfg.preprocess.wenet_sample_rate)
],
)
final_n_frames = min(final_n_frames, wenet_feats.size(1))
batch["wenet_feat"] = wenet_feats
### Align all the audio features to the same frame length ###
frame_level_features = [
"mask",
"mel",
"frame_pitch",
"frame_uv",
"frame_energy",
"whisper_feat",
"contentvec_feat",
"wenet_feat",
]
for k in frame_level_features:
if k in batch:
# (B, n_frames, ...)
batch[k] = batch[k][:, :final_n_frames].contiguous()
return batch
@staticmethod
def _build_criterion():
criterion = nn.MSELoss(reduction="none")
return criterion
@staticmethod
def _compute_loss(criterion, y_pred, y_gt, loss_mask):
"""
Args:
criterion: MSELoss(reduction='none')
y_pred, y_gt: (B, seq_len, D)
loss_mask: (B, seq_len, 1)
Returns:
loss: Tensor of shape []
"""
# (B, seq_len, D)
loss = criterion(y_pred, y_gt)
# expand loss_mask to (B, seq_len, D)
loss_mask = loss_mask.repeat(1, 1, loss.shape[-1])
loss = torch.sum(loss * loss_mask) / torch.sum(loss_mask)
return loss
def _save_auxiliary_states(self):
"""
To save the singer's look-up table in the checkpoint saving path
"""
with open(
os.path.join(self.tmp_checkpoint_save_path, self.cfg.preprocess.spk2id),
"w",
encoding="utf-8",
) as f:
json.dump(self.singers, f, indent=4, ensure_ascii=False)
def _build_singer_lut(self):
resumed_singer_path = None
if self.args.resume_from_ckpt_path and self.args.resume_from_ckpt_path != "":
resumed_singer_path = os.path.join(
self.args.resume_from_ckpt_path, self.cfg.preprocess.spk2id
)
if os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)):
resumed_singer_path = os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)
if resumed_singer_path:
with open(resumed_singer_path, "r") as f:
singers = json.load(f)
else:
singers = dict()
for dataset in self.cfg.dataset:
singer_lut_path = os.path.join(
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.spk2id
)
with open(singer_lut_path, "r") as singer_lut_path:
singer_lut = json.load(singer_lut_path)
for singer in singer_lut.keys():
if singer not in singers:
singers[singer] = len(singers)
with open(
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "w"
) as singer_file:
json.dump(singers, singer_file, indent=4, ensure_ascii=False)
print(
"singers have been dumped to {}".format(
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)
)
)
return singers
|