File size: 5,815 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from .basic import UNetBlock
from modules.general.utils import (
append_dims,
ConvNd,
normalization,
zero_module,
)
class ResBlock(UNetBlock):
r"""A residual block that can optionally change the number of channels.
Args:
channels: the number of input channels.
emb_channels: the number of timestep embedding channels.
dropout: the rate of dropout.
out_channels: if specified, the number of out channels.
use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
dims: determines if the signal is 1D, 2D, or 3D.
up: if True, use this block for upsampling.
down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout: float = 0.0,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
ConvNd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
ConvNd(
dims,
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
1,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
ConvNd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = ConvNd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = ConvNd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
x: an [N x C x ...] Tensor of features.
emb: an [N x emb_channels x ...] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb)
emb_out = append_dims(emb_out, h.dim())
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class Upsample(nn.Module):
r"""An upsampling layer with an optional convolution.
Args:
channels: channels in the inputs and outputs.
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
out_channels: if specified, the number of out channels.
"""
def __init__(self, channels, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.dims = dims
self.conv = ConvNd(dims, self.channels, self.out_channels, 3, padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
x = self.conv(x)
return x
class Downsample(nn.Module):
r"""A downsampling layer with an optional convolution.
Args:
channels: channels in the inputs and outputs.
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
out_channels: if specified, the number of output channels.
"""
def __init__(self, channels, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
self.op = ConvNd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=1
)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
|