File size: 17,230 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
from itertools import chain
from typing import Any
from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
from typing import NamedTuple
import torch
from modules.wenet_extractor.paraformer.utils import end_detect
from modules.wenet_extractor.paraformer.search.ctc import CTCPrefixScorer
from modules.wenet_extractor.paraformer.search.scorer_interface import (
ScorerInterface,
PartialScorerInterface,
)
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: torch.Tensor
score: Union[float, torch.Tensor] = 0
scores: Dict[str, Union[float, torch.Tensor]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
class BeamSearchCIF(torch.nn.Module):
"""Beam search implementation."""
def __init__(
self,
scorers: Dict[str, ScorerInterface],
weights: Dict[str, float],
beam_size: int,
vocab_size: int,
sos: int,
eos: int,
pre_beam_ratio: float = 1.5,
pre_beam_score_key: str = None,
):
"""Initialize beam search.
Args:
scorers (dict[str, ScorerInterface]): Dict of decoder modules
e.g., Decoder, CTCPrefixScorer, LM
The scorer will be ignored if it is `None`
weights (dict[str, float]): Dict of weights for each scorers
The scorer will be ignored if its weight is 0
beam_size (int): The number of hypotheses kept during search
vocab_size (int): The number of vocabulary
sos (int): Start of sequence id
eos (int): End of sequence id
pre_beam_score_key (str): key of scores to perform pre-beam search
pre_beam_ratio (float): beam size in the pre-beam search
will be `int(pre_beam_ratio * beam_size)`
"""
super().__init__()
# set scorers
self.weights = weights
self.scorers = dict()
self.full_scorers = dict()
self.part_scorers = dict()
# this module dict is required for recursive cast
# `self.to(device, dtype)` in `recog.py`
self.nn_dict = torch.nn.ModuleDict()
for k, v in scorers.items():
w = weights.get(k, 0)
if w == 0 or v is None:
continue
assert isinstance(
v, ScorerInterface
), f"{k} ({type(v)}) does not implement ScorerInterface"
self.scorers[k] = v
if isinstance(v, PartialScorerInterface):
self.part_scorers[k] = v
else:
self.full_scorers[k] = v
if isinstance(v, torch.nn.Module):
self.nn_dict[k] = v
# set configurations
self.sos = sos
self.eos = eos
self.pre_beam_size = int(pre_beam_ratio * beam_size)
self.beam_size = beam_size
self.n_vocab = vocab_size
if (
pre_beam_score_key is not None
and pre_beam_score_key != "full"
and pre_beam_score_key not in self.full_scorers
):
raise KeyError(
f"{pre_beam_score_key} is not found in " f"{self.full_scorers}"
)
self.pre_beam_score_key = pre_beam_score_key
self.do_pre_beam = (
self.pre_beam_score_key is not None
and self.pre_beam_size < self.n_vocab
and len(self.part_scorers) > 0
)
def init_hyp(self, x: torch.Tensor) -> List[Hypothesis]:
"""Get an initial hypothesis data.
Args:
x (torch.Tensor): The encoder output feature
Returns:
Hypothesis: The initial hypothesis.
"""
init_states = dict()
init_scores = dict()
for k, d in self.scorers.items():
init_states[k] = d.init_state(x)
init_scores[k] = 0.0
return [
Hypothesis(
score=0.0,
scores=init_scores,
states=init_states,
yseq=torch.tensor([self.sos], device=x.device),
)
]
@staticmethod
def append_token(xs: torch.Tensor, x: int) -> torch.Tensor:
"""Append new token to prefix tokens.
Args:
xs (torch.Tensor): The prefix token
x (int): The new token to append
Returns:
torch.Tensor: New tensor contains: xs + [x] with xs.dtype and
xs.device
"""
x = torch.tensor([x], dtype=xs.dtype, device=xs.device)
return torch.cat((xs, x))
def score_full(
self, hyp: Hypothesis, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
x (torch.Tensor): Corresponding input feature
Returns:
Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.full_scorers.items():
scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x)
return scores, states
def score_partial(
self, hyp: Hypothesis, ids: torch.Tensor, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.part_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
ids (torch.Tensor): 1D tensor of new partial tokens to score
x (torch.Tensor): Corresponding input feature
Returns:
Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.part_scorers`
and tensor score values of shape: `(len(ids),)`,
and state dict that has string keys
and state values of `self.part_scorers`
"""
scores = dict()
states = dict()
for k, d in self.part_scorers.items():
scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k], x)
return scores, states
def beam(
self, weighted_scores: torch.Tensor, ids: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute topk full token ids and partial token ids.
Args:
weighted_scores (torch.Tensor): The weighted sum scores for each
tokens.
Its shape is `(self.n_vocab,)`.
ids (torch.Tensor): The partial token ids to compute topk
Returns:
Tuple[torch.Tensor, torch.Tensor]:
The topk full token ids and partial token ids.
Their shapes are `(self.beam_size,)`
"""
# no pre beam performed
if weighted_scores.size(0) == ids.size(0):
top_ids = weighted_scores.topk(self.beam_size)[1]
return top_ids, top_ids
# mask pruned in pre-beam not to select in topk
tmp = weighted_scores[ids]
weighted_scores[:] = -float("inf")
weighted_scores[ids] = tmp
top_ids = weighted_scores.topk(self.beam_size)[1]
local_ids = weighted_scores[ids].topk(self.beam_size)[1]
return top_ids, local_ids
@staticmethod
def merge_scores(
prev_scores: Dict[str, float],
next_full_scores: Dict[str, torch.Tensor],
full_idx: int,
next_part_scores: Dict[str, torch.Tensor],
part_idx: int,
) -> Dict[str, torch.Tensor]:
"""Merge scores for new hypothesis.
Args:
prev_scores (Dict[str, float]):
The previous hypothesis scores by `self.scorers`
next_full_scores (Dict[str, torch.Tensor]): scores by
`self.full_scorers`
full_idx (int): The next token id for `next_full_scores`
next_part_scores (Dict[str, torch.Tensor]):
scores of partial tokens by `self.part_scorers`
part_idx (int): The new token id for `next_part_scores`
Returns:
Dict[str, torch.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and
`self.part_scorers`.
Its values are scalar tensors by the scorers.
"""
new_scores = dict()
for k, v in next_full_scores.items():
new_scores[k] = prev_scores[k] + v[full_idx]
for k, v in next_part_scores.items():
new_scores[k] = prev_scores[k] + v[part_idx]
return new_scores
def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
"""Merge states for new hypothesis.
Args:
states: states of `self.full_scorers`
part_states: states of `self.part_scorers`
part_idx (int): The new token id for `part_scores`
Returns:
Dict[str, torch.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and
`self.part_scorers`.
Its values are states of the scorers.
"""
new_states = dict()
for k, v in states.items():
new_states[k] = v
for k, d in self.part_scorers.items():
new_states[k] = d.select_state(part_states[k], part_idx)
return new_states
def search(
self, running_hyps: List[Hypothesis], x: torch.Tensor, am_score: torch.Tensor
) -> List[Hypothesis]:
"""Search new tokens for running hypotheses and encoded speech x.
Args:
running_hyps (List[Hypothesis]): Running hypotheses on beam
x (torch.Tensor): Encoded speech feature (T, D)
Returns:
List[Hypotheses]: Best sorted hypotheses
"""
best_hyps = []
part_ids = torch.arange(self.n_vocab, device=x.device) # no pre-beam
for hyp in running_hyps:
# scoring
weighted_scores = torch.zeros(self.n_vocab, dtype=x.dtype, device=x.device)
weighted_scores += am_score
scores, states = self.score_full(hyp, x)
for k in self.full_scorers:
weighted_scores += self.weights[k] * scores[k]
# partial scoring
if self.do_pre_beam:
pre_beam_scores = (
weighted_scores
if self.pre_beam_score_key == "full"
else scores[self.pre_beam_score_key]
)
part_ids = torch.topk(pre_beam_scores, self.pre_beam_size)[1]
part_scores, part_states = self.score_partial(hyp, part_ids, x)
for k in self.part_scorers:
weighted_scores[part_ids] += self.weights[k] * part_scores[k]
# add previous hyp score
weighted_scores += hyp.score
# update hyps
for j, part_j in zip(*self.beam(weighted_scores, part_ids)):
# will be (2 x beam at most)
best_hyps.append(
Hypothesis(
score=weighted_scores[j],
yseq=self.append_token(hyp.yseq, j),
scores=self.merge_scores(
hyp.scores, scores, j, part_scores, part_j
),
states=self.merge_states(states, part_states, part_j),
)
)
# sort and prune 2 x beam -> beam
best_hyps = sorted(best_hyps, key=lambda x: x.score, reverse=True)[
: min(len(best_hyps), self.beam_size)
]
return best_hyps
def forward(
self,
x: torch.Tensor,
am_scores: torch.Tensor,
maxlenratio: float = 0.0,
minlenratio: float = 0.0,
) -> List[Hypothesis]:
"""Perform beam search.
Args:
x (torch.Tensor): Encoded speech feature (T, D)
maxlenratio (float): Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths
If maxlenratio<0.0, its absolute value is interpreted
as a constant max output length.
minlenratio (float): Input length ratio to obtain min output length.
Returns:
list[Hypothesis]: N-best decoding results
"""
# set length bounds
maxlen = am_scores.shape[0]
# main loop of prefix search
running_hyps = self.init_hyp(x)
ended_hyps = []
for i in range(maxlen):
best = self.search(running_hyps, x, am_scores[i])
# post process of one iteration
running_hyps = self.post_process(i, maxlen, maxlenratio, best, ended_hyps)
# end detection
if maxlenratio == 0.0 and end_detect([h.asdict() for h in ended_hyps], i):
break
nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True)
# check the number of hypotheses reaching to eos
if len(nbest_hyps) == 0:
return (
[]
if minlenratio < 0.1
else self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1))
)
best = nbest_hyps[0]
return nbest_hyps
def post_process(
self,
i: int,
maxlen: int,
maxlenratio: float,
running_hyps: List[Hypothesis],
ended_hyps: List[Hypothesis],
) -> List[Hypothesis]:
"""Perform post-processing of beam search iterations.
Args:
i (int): The length of hypothesis tokens.
maxlen (int): The maximum length of tokens in beam search.
maxlenratio (int): The maximum length ratio in beam search.
running_hyps (List[Hypothesis]): The running hypotheses in beam
search.
ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.
Returns:
List[Hypothesis]: The new running hypotheses.
"""
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
# logging.info("adding <eos> in the last position in the loop")
running_hyps = [
h._replace(yseq=self.append_token(h.yseq, self.eos))
for h in running_hyps
]
# add ended hypotheses to a final list, and removed them from current
# hypotheses
# (this will be a problem, number of hyps < beam)
remained_hyps = []
for hyp in running_hyps:
if hyp.yseq[-1] == self.eos:
# e.g., Word LM needs to add final <eos> score
for k, d in chain(self.full_scorers.items(), self.part_scorers.items()):
s = d.final_score(hyp.states[k])
hyp.scores[k] += s
hyp = hyp._replace(score=hyp.score + self.weights[k] * s)
ended_hyps.append(hyp)
else:
remained_hyps.append(hyp)
return remained_hyps
def build_beam_search(model, args, device):
scorers = {}
if model.ctc is not None:
ctc = CTCPrefixScorer(ctc=model.ctc, eos=model.eos)
scorers.update(ctc=ctc)
weights = dict(
decoder=1.0 - args.ctc_weight,
ctc=args.ctc_weight,
length_bonus=args.penalty,
)
beam_search = BeamSearchCIF(
beam_size=args.beam_size,
weights=weights,
scorers=scorers,
sos=model.sos,
eos=model.eos,
vocab_size=model.vocab_size,
pre_beam_score_key=None if args.ctc_weight == 1.0 else "full",
)
beam_search.to(device=device, dtype=torch.float32).eval()
return beam_search
|