File size: 9,651 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This code is modified from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/model/base.py
import math
from dataclasses import dataclass
from pathlib import Path
from typing import Union
import numpy as np
import torch
import tqdm
from audiotools import AudioSignal
from torch import nn
SUPPORTED_VERSIONS = ["1.0.0"]
@dataclass
class DACFile:
codes: torch.Tensor
# Metadata
chunk_length: int
original_length: int
input_db: float
channels: int
sample_rate: int
padding: bool
dac_version: str
def save(self, path):
artifacts = {
"codes": self.codes.numpy().astype(np.uint16),
"metadata": {
"input_db": self.input_db.numpy().astype(np.float32),
"original_length": self.original_length,
"sample_rate": self.sample_rate,
"chunk_length": self.chunk_length,
"channels": self.channels,
"padding": self.padding,
"dac_version": SUPPORTED_VERSIONS[-1],
},
}
path = Path(path).with_suffix(".dac")
with open(path, "wb") as f:
np.save(f, artifacts)
return path
@classmethod
def load(cls, path):
artifacts = np.load(path, allow_pickle=True)[()]
codes = torch.from_numpy(artifacts["codes"].astype(int))
if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
raise RuntimeError(
f"Given file {path} can't be loaded with this version of descript-audio-codec."
)
return cls(codes=codes, **artifacts["metadata"])
class CodecMixin:
@property
def padding(self):
if not hasattr(self, "_padding"):
self._padding = True
return self._padding
@padding.setter
def padding(self, value):
assert isinstance(value, bool)
layers = [
l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
]
for layer in layers:
if value:
if hasattr(layer, "original_padding"):
layer.padding = layer.original_padding
else:
layer.original_padding = layer.padding
layer.padding = tuple(0 for _ in range(len(layer.padding)))
self._padding = value
def get_delay(self):
# Any number works here, delay is invariant to input length
l_out = self.get_output_length(0)
L = l_out
layers = []
for layer in self.modules():
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
layers.append(layer)
for layer in reversed(layers):
d = layer.dilation[0]
k = layer.kernel_size[0]
s = layer.stride[0]
if isinstance(layer, nn.ConvTranspose1d):
L = ((L - d * (k - 1) - 1) / s) + 1
elif isinstance(layer, nn.Conv1d):
L = (L - 1) * s + d * (k - 1) + 1
L = math.ceil(L)
l_in = L
return (l_in - l_out) // 2
def get_output_length(self, input_length):
L = input_length
# Calculate output length
for layer in self.modules():
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
d = layer.dilation[0]
k = layer.kernel_size[0]
s = layer.stride[0]
if isinstance(layer, nn.Conv1d):
L = ((L - d * (k - 1) - 1) / s) + 1
elif isinstance(layer, nn.ConvTranspose1d):
L = (L - 1) * s + d * (k - 1) + 1
L = math.floor(L)
return L
@torch.no_grad()
def compress(
self,
audio_path_or_signal: Union[str, Path, AudioSignal],
win_duration: float = 1.0,
verbose: bool = False,
normalize_db: float = -16,
n_quantizers: int = None,
) -> DACFile:
"""Processes an audio signal from a file or AudioSignal object into
discrete codes. This function processes the signal in short windows,
using constant GPU memory.
Parameters
----------
audio_path_or_signal : Union[str, Path, AudioSignal]
audio signal to reconstruct
win_duration : float, optional
window duration in seconds, by default 5.0
verbose : bool, optional
by default False
normalize_db : float, optional
normalize db, by default -16
Returns
-------
DACFile
Object containing compressed codes and metadata
required for decompression
"""
audio_signal = audio_path_or_signal
if isinstance(audio_signal, (str, Path)):
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
self.eval()
original_padding = self.padding
original_device = audio_signal.device
audio_signal = audio_signal.clone()
original_sr = audio_signal.sample_rate
resample_fn = audio_signal.resample
loudness_fn = audio_signal.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if audio_signal.signal_duration >= 10 * 60 * 60:
resample_fn = audio_signal.ffmpeg_resample
loudness_fn = audio_signal.ffmpeg_loudness
original_length = audio_signal.signal_length
resample_fn(self.sample_rate)
input_db = loudness_fn()
if normalize_db is not None:
audio_signal.normalize(normalize_db)
audio_signal.ensure_max_of_audio()
nb, nac, nt = audio_signal.audio_data.shape
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
win_duration = (
audio_signal.signal_duration if win_duration is None else win_duration
)
if audio_signal.signal_duration <= win_duration:
# Unchunked compression (used if signal length < win duration)
self.padding = True
n_samples = nt
hop = nt
else:
# Chunked inference
self.padding = False
# Zero-pad signal on either side by the delay
audio_signal.zero_pad(self.delay, self.delay)
n_samples = int(win_duration * self.sample_rate)
# Round n_samples to nearest hop length multiple
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
hop = self.get_output_length(n_samples)
codes = []
range_fn = range if not verbose else tqdm.trange
for i in range_fn(0, nt, hop):
x = audio_signal[..., i : i + n_samples]
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
audio_data = x.audio_data.to(self.device)
audio_data = self.preprocess(audio_data, self.sample_rate)
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
codes.append(c.to(original_device))
chunk_length = c.shape[-1]
codes = torch.cat(codes, dim=-1)
dac_file = DACFile(
codes=codes,
chunk_length=chunk_length,
original_length=original_length,
input_db=input_db,
channels=nac,
sample_rate=original_sr,
padding=self.padding,
dac_version=SUPPORTED_VERSIONS[-1],
)
if n_quantizers is not None:
codes = codes[:, :n_quantizers, :]
self.padding = original_padding
return dac_file
@torch.no_grad()
def decompress(
self,
obj: Union[str, Path, DACFile],
verbose: bool = False,
) -> AudioSignal:
"""Reconstruct audio from a given .dac file
Parameters
----------
obj : Union[str, Path, DACFile]
.dac file location or corresponding DACFile object.
verbose : bool, optional
Prints progress if True, by default False
Returns
-------
AudioSignal
Object with the reconstructed audio
"""
self.eval()
if isinstance(obj, (str, Path)):
obj = DACFile.load(obj)
original_padding = self.padding
self.padding = obj.padding
range_fn = range if not verbose else tqdm.trange
codes = obj.codes
original_device = codes.device
chunk_length = obj.chunk_length
recons = []
for i in range_fn(0, codes.shape[-1], chunk_length):
c = codes[..., i : i + chunk_length].to(self.device)
z = self.quantizer.from_codes(c)[0]
r = self.decode(z)
recons.append(r.to(original_device))
recons = torch.cat(recons, dim=-1)
recons = AudioSignal(recons, self.sample_rate)
resample_fn = recons.resample
loudness_fn = recons.loudness
# If audio is > 10 minutes long, use the ffmpeg versions
if recons.signal_duration >= 10 * 60 * 60:
resample_fn = recons.ffmpeg_resample
loudness_fn = recons.ffmpeg_loudness
recons.normalize(obj.input_db)
resample_fn(obj.sample_rate)
recons = recons[..., : obj.original_length]
loudness_fn()
recons.audio_data = recons.audio_data.reshape(
-1, obj.channels, obj.original_length
)
self.padding = original_padding
return recons
|