File size: 4,748 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import glob
import os
import json
import torchaudio
from tqdm import tqdm
from collections import defaultdict


from utils.io import save_audio
from utils.util import has_existed, remove_and_create
from utils.audio_slicer import Slicer
from preprocessors import GOLDEN_TEST_SAMPLES


def split_to_utterances(input_dir, output_dir):
    print("Splitting to utterances for {}...".format(input_dir))

    files_list = glob.glob("*.flac", root_dir=input_dir)
    files_list.sort()
    for wav_file in tqdm(files_list):
        # Load waveform
        waveform, fs = torchaudio.load(os.path.join(input_dir, wav_file))

        # Song name
        filename = wav_file.replace(" ", "")
        filename = filename.replace("(Live)", "")
        song_id, filename = filename.split("李ε₯-")

        song_id = song_id.split("_")[0]
        song_name = "{:03d}".format(int(song_id)) + filename.split("_")[0].split("-")[0]

        # Split
        slicer = Slicer(sr=fs, threshold=-30.0, max_sil_kept=3000)
        chunks = slicer.slice(waveform)

        save_dir = os.path.join(output_dir, song_name)
        remove_and_create(save_dir)

        for i, chunk in enumerate(chunks):
            output_file = os.path.join(save_dir, "{:04d}.wav".format(i))
            save_audio(output_file, chunk, fs)


def _main(dataset_path):
    """
    Split to utterances
    """
    utterance_dir = os.path.join(dataset_path, "utterances")
    split_to_utterances(os.path.join(dataset_path, "vocal_v2"), utterance_dir)


def get_test_songs():
    golden_samples = GOLDEN_TEST_SAMPLES["lijian"]
    golden_songs = [s.split("_")[0] for s in golden_samples]
    return golden_songs


def statistics(utt_dir):
    song2utts = defaultdict(list)

    song_infos = glob.glob(utt_dir + "/*")
    song_infos.sort()
    for song in song_infos:
        song_name = song.split("/")[-1]
        utt_infos = glob.glob(song + "/*.wav")
        utt_infos.sort()
        for utt in utt_infos:
            uid = utt.split("/")[-1].split(".")[0]
            song2utts[song_name].append(uid)

    utt_sum = sum([len(utts) for utts in song2utts.values()])
    print("Li Jian: {} unique songs, {} utterances".format(len(song2utts), utt_sum))
    return song2utts


def main(output_path, dataset_path):
    print("-" * 10)
    print("Preparing test samples for Li Jian...\n")

    if not os.path.exists(os.path.join(dataset_path, "utterances")):
        print("Spliting into utterances...\n")
        _main(dataset_path)

    save_dir = os.path.join(output_path, "lijian")
    train_output_file = os.path.join(save_dir, "train.json")
    test_output_file = os.path.join(save_dir, "test.json")
    if has_existed(test_output_file):
        return

    # Load
    lijian_path = os.path.join(dataset_path, "utterances")
    song2utts = statistics(lijian_path)
    test_songs = get_test_songs()

    # We select songs of standard samples as test songs
    train = []
    test = []

    train_index_count = 0
    test_index_count = 0

    train_total_duration = 0
    test_total_duration = 0

    for chosen_song, utts in tqdm(song2utts.items()):
        for chosen_uid in song2utts[chosen_song]:
            res = {
                "Dataset": "lijian",
                "Singer": "lijian",
                "Uid": "{}_{}".format(chosen_song, chosen_uid),
            }
            res["Path"] = "{}/{}.wav".format(chosen_song, chosen_uid)
            res["Path"] = os.path.join(lijian_path, res["Path"])
            assert os.path.exists(res["Path"])

            waveform, sample_rate = torchaudio.load(res["Path"])
            duration = waveform.size(-1) / sample_rate
            res["Duration"] = duration

            if duration <= 1e-8:
                continue

            if chosen_song in test_songs:
                res["index"] = test_index_count
                test_total_duration += duration
                test.append(res)
                test_index_count += 1
            else:
                res["index"] = train_index_count
                train_total_duration += duration
                train.append(res)
                train_index_count += 1

    print("#Train = {}, #Test = {}".format(len(train), len(test)))
    print(
        "#Train hours= {}, #Test hours= {}".format(
            train_total_duration / 3600, test_total_duration / 3600
        )
    )

    # Save
    os.makedirs(save_dir, exist_ok=True)
    with open(train_output_file, "w") as f:
        json.dump(train, f, indent=4, ensure_ascii=False)
    with open(test_output_file, "w") as f:
        json.dump(test, f, indent=4, ensure_ascii=False)