File size: 4,748 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import glob
import os
import json
import torchaudio
from tqdm import tqdm
from collections import defaultdict
from utils.io import save_audio
from utils.util import has_existed, remove_and_create
from utils.audio_slicer import Slicer
from preprocessors import GOLDEN_TEST_SAMPLES
def split_to_utterances(input_dir, output_dir):
print("Splitting to utterances for {}...".format(input_dir))
files_list = glob.glob("*.flac", root_dir=input_dir)
files_list.sort()
for wav_file in tqdm(files_list):
# Load waveform
waveform, fs = torchaudio.load(os.path.join(input_dir, wav_file))
# Song name
filename = wav_file.replace(" ", "")
filename = filename.replace("(Live)", "")
song_id, filename = filename.split("ζε₯-")
song_id = song_id.split("_")[0]
song_name = "{:03d}".format(int(song_id)) + filename.split("_")[0].split("-")[0]
# Split
slicer = Slicer(sr=fs, threshold=-30.0, max_sil_kept=3000)
chunks = slicer.slice(waveform)
save_dir = os.path.join(output_dir, song_name)
remove_and_create(save_dir)
for i, chunk in enumerate(chunks):
output_file = os.path.join(save_dir, "{:04d}.wav".format(i))
save_audio(output_file, chunk, fs)
def _main(dataset_path):
"""
Split to utterances
"""
utterance_dir = os.path.join(dataset_path, "utterances")
split_to_utterances(os.path.join(dataset_path, "vocal_v2"), utterance_dir)
def get_test_songs():
golden_samples = GOLDEN_TEST_SAMPLES["lijian"]
golden_songs = [s.split("_")[0] for s in golden_samples]
return golden_songs
def statistics(utt_dir):
song2utts = defaultdict(list)
song_infos = glob.glob(utt_dir + "/*")
song_infos.sort()
for song in song_infos:
song_name = song.split("/")[-1]
utt_infos = glob.glob(song + "/*.wav")
utt_infos.sort()
for utt in utt_infos:
uid = utt.split("/")[-1].split(".")[0]
song2utts[song_name].append(uid)
utt_sum = sum([len(utts) for utts in song2utts.values()])
print("Li Jian: {} unique songs, {} utterances".format(len(song2utts), utt_sum))
return song2utts
def main(output_path, dataset_path):
print("-" * 10)
print("Preparing test samples for Li Jian...\n")
if not os.path.exists(os.path.join(dataset_path, "utterances")):
print("Spliting into utterances...\n")
_main(dataset_path)
save_dir = os.path.join(output_path, "lijian")
train_output_file = os.path.join(save_dir, "train.json")
test_output_file = os.path.join(save_dir, "test.json")
if has_existed(test_output_file):
return
# Load
lijian_path = os.path.join(dataset_path, "utterances")
song2utts = statistics(lijian_path)
test_songs = get_test_songs()
# We select songs of standard samples as test songs
train = []
test = []
train_index_count = 0
test_index_count = 0
train_total_duration = 0
test_total_duration = 0
for chosen_song, utts in tqdm(song2utts.items()):
for chosen_uid in song2utts[chosen_song]:
res = {
"Dataset": "lijian",
"Singer": "lijian",
"Uid": "{}_{}".format(chosen_song, chosen_uid),
}
res["Path"] = "{}/{}.wav".format(chosen_song, chosen_uid)
res["Path"] = os.path.join(lijian_path, res["Path"])
assert os.path.exists(res["Path"])
waveform, sample_rate = torchaudio.load(res["Path"])
duration = waveform.size(-1) / sample_rate
res["Duration"] = duration
if duration <= 1e-8:
continue
if chosen_song in test_songs:
res["index"] = test_index_count
test_total_duration += duration
test.append(res)
test_index_count += 1
else:
res["index"] = train_index_count
train_total_duration += duration
train.append(res)
train_index_count += 1
print("#Train = {}, #Test = {}".format(len(train), len(test)))
print(
"#Train hours= {}, #Test hours= {}".format(
train_total_duration / 3600, test_total_duration / 3600
)
)
# Save
os.makedirs(save_dir, exist_ok=True)
with open(train_output_file, "w") as f:
json.dump(train, f, indent=4, ensure_ascii=False)
with open(test_output_file, "w") as f:
json.dump(test, f, indent=4, ensure_ascii=False)
|