File size: 4,709 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import torch
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from models.base.base_dataset import (
BaseOfflineCollator,
BaseOfflineDataset,
BaseTestDataset,
BaseTestCollator,
)
import librosa
from transformers import AutoTokenizer
class AudioLDMDataset(BaseOfflineDataset):
def __init__(self, cfg, dataset, is_valid=False):
BaseOfflineDataset.__init__(self, cfg, dataset, is_valid=is_valid)
self.cfg = cfg
# utt2melspec
if cfg.preprocess.use_melspec:
self.utt2melspec_path = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2melspec_path[utt] = os.path.join(
cfg.preprocess.processed_dir,
dataset,
cfg.preprocess.melspec_dir,
uid + ".npy",
)
# utt2wav
if cfg.preprocess.use_wav:
self.utt2wav_path = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2wav_path[utt] = os.path.join(
cfg.preprocess.processed_dir,
dataset,
cfg.preprocess.wav_dir,
uid + ".wav",
)
# utt2caption
if cfg.preprocess.use_caption:
self.utt2caption = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
self.utt2caption[utt] = utt_info["Caption"]
def __getitem__(self, index):
# melspec: (n_mels, T)
# wav: (T,)
single_feature = BaseOfflineDataset.__getitem__(self, index)
utt_info = self.metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
if self.cfg.preprocess.use_melspec:
single_feature["melspec"] = np.load(self.utt2melspec_path[utt])
if self.cfg.preprocess.use_wav:
wav, sr = librosa.load(
self.utt2wav_path[utt], sr=16000
) # hard coding for 16KHz...
single_feature["wav"] = wav
if self.cfg.preprocess.use_caption:
cond_mask = np.random.choice(
[1, 0],
p=[
self.cfg.preprocess.cond_mask_prob,
1 - self.cfg.preprocess.cond_mask_prob,
],
) # (0.1, 0.9)
if cond_mask:
single_feature["caption"] = ""
else:
single_feature["caption"] = self.utt2caption[utt]
return single_feature
def __len__(self):
return len(self.metadata)
class AudioLDMCollator(BaseOfflineCollator):
def __init__(self, cfg):
BaseOfflineCollator.__init__(self, cfg)
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", model_max_length=512)
def __call__(self, batch):
# mel: (B, n_mels, T)
# wav (option): (B, T)
# text_input_ids: (B, L)
# text_attention_mask: (B, L)
packed_batch_features = dict()
for key in batch[0].keys():
if key == "melspec":
packed_batch_features["melspec"] = torch.from_numpy(
np.array([b["melspec"][:, :624] for b in batch])
)
if key == "wav":
values = [torch.from_numpy(b[key]) for b in batch]
packed_batch_features[key] = pad_sequence(
values, batch_first=True, padding_value=0
)
if key == "caption":
captions = [b[key] for b in batch]
text_input = self.tokenizer(
captions, return_tensors="pt", truncation=True, padding="longest"
)
text_input_ids = text_input["input_ids"]
text_attention_mask = text_input["attention_mask"]
packed_batch_features["text_input_ids"] = text_input_ids
packed_batch_features["text_attention_mask"] = text_attention_mask
return packed_batch_features
class AudioLDMTestDataset(BaseTestDataset): ...
class AudioLDMTestCollator(BaseTestCollator): ...
|