File size: 20,123 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import json
import librosa
import numpy as np
import sys
import os
import tqdm
import warnings
import torch
from pydub import AudioSegment
from pyannote.audio import Pipeline
import pandas as pd

from utils.tool import (
    export_to_mp3,
    load_cfg,
    get_audio_files,
    detect_gpu,
    check_env,
    calculate_audio_stats,
)
from utils.logger import Logger, time_logger
from models import separate_fast, dnsmos, whisper_asr, silero_vad

warnings.filterwarnings("ignore")
audio_count = 0


@time_logger
def standardization(audio):
    """
    Preprocess the audio file, including setting sample rate, bit depth, channels, and volume normalization.

    Args:
        audio (str or AudioSegment): Audio file path or AudioSegment object, the audio to be preprocessed.

    Returns:
        dict: A dictionary containing the preprocessed audio waveform, audio file name, and sample rate, formatted as:
              {
                  "waveform": np.ndarray, the preprocessed audio waveform, dtype is np.float32, shape is (num_samples,)
                  "name": str, the audio file name
                  "sample_rate": int, the audio sample rate
              }

    Raises:
        ValueError: If the audio parameter is neither a str nor an AudioSegment.
    """
    global audio_count
    name = "audio"

    if isinstance(audio, str):
        name = os.path.basename(audio)
        audio = AudioSegment.from_file(audio)
    elif isinstance(audio, AudioSegment):
        name = f"audio_{audio_count}"
        audio_count += 1
    else:
        raise ValueError("Invalid audio type")

    logger.debug("Entering the preprocessing of audio")

    # Convert the audio file to WAV format
    audio = audio.set_frame_rate(cfg["entrypoint"]["SAMPLE_RATE"])
    audio = audio.set_sample_width(2)  # Set bit depth to 16bit
    audio = audio.set_channels(1)  # Set to mono

    logger.debug("Audio file converted to WAV format")

    # Calculate the gain to be applied
    target_dBFS = -20
    gain = target_dBFS - audio.dBFS
    logger.info(f"Calculating the gain needed for the audio: {gain} dB")

    # Normalize volume and limit gain range to between -3 and 3
    normalized_audio = audio.apply_gain(min(max(gain, -3), 3))

    waveform = np.array(normalized_audio.get_array_of_samples(), dtype=np.float32)
    max_amplitude = np.max(np.abs(waveform))
    waveform /= max_amplitude  # Normalize

    logger.debug(f"waveform shape: {waveform.shape}")
    logger.debug("waveform in np ndarray, dtype=" + str(waveform.dtype))

    return {
        "waveform": waveform,
        "name": name,
        "sample_rate": cfg["entrypoint"]["SAMPLE_RATE"],
    }


@time_logger
def source_separation(predictor, audio):
    """
    Separate the audio into vocals and non-vocals using the given predictor.

    Args:
        predictor: The separation model predictor.
        audio (str or dict): The audio file path or a dictionary containing audio waveform and sample rate.

    Returns:
        dict: A dictionary containing the separated vocals and updated audio waveform.
    """

    mix, rate = None, None

    if isinstance(audio, str):
        mix, rate = librosa.load(audio, mono=False, sr=44100)
    else:
        # resample to 44100
        rate = audio["sample_rate"]
        mix = librosa.resample(audio["waveform"], orig_sr=rate, target_sr=44100)

    vocals, no_vocals = predictor.predict(mix)

    # convert vocals back to previous sample rate
    logger.debug(f"vocals shape before resample: {vocals.shape}")
    vocals = librosa.resample(vocals.T, orig_sr=44100, target_sr=rate).T
    logger.debug(f"vocals shape after resample: {vocals.shape}")
    audio["waveform"] = vocals[:, 0]  # vocals is stereo, only use one channel

    return audio


# Step 2: Speaker Diarization
@time_logger
def speaker_diarization(audio):
    """
    Perform speaker diarization on the given audio.

    Args:
        audio (dict): A dictionary containing the audio waveform and sample rate.

    Returns:
        pd.DataFrame: A dataframe containing segments with speaker labels.
    """
    logger.debug(f"Start speaker diarization")
    logger.debug(f"audio waveform shape: {audio['waveform'].shape}")

    waveform = torch.tensor(audio["waveform"]).to(device)
    waveform = torch.unsqueeze(waveform, 0)

    segments = dia_pipeline(
        {
            "waveform": waveform,
            "sample_rate": audio["sample_rate"],
            "channel": 0,
        }
    )

    diarize_df = pd.DataFrame(
        segments.itertracks(yield_label=True),
        columns=["segment", "label", "speaker"],
    )
    diarize_df["start"] = diarize_df["segment"].apply(lambda x: x.start)
    diarize_df["end"] = diarize_df["segment"].apply(lambda x: x.end)

    logger.debug(f"diarize_df: {diarize_df}")

    return diarize_df


@time_logger
def cut_by_speaker_label(vad_list):
    """
    Merge and trim VAD segments by speaker labels, enforcing constraints on segment length and merge gaps.

    Args:
        vad_list (list): List of VAD segments with start, end, and speaker labels.

    Returns:
        list: A list of updated VAD segments after merging and trimming.
    """
    MERGE_GAP = 2  # merge gap in seconds, if smaller than this, merge
    MIN_SEGMENT_LENGTH = 3  # min segment length in seconds
    MAX_SEGMENT_LENGTH = 30  # max segment length in seconds

    updated_list = []

    for idx, vad in enumerate(vad_list):
        last_start_time = updated_list[-1]["start"] if updated_list else None
        last_end_time = updated_list[-1]["end"] if updated_list else None
        last_speaker = updated_list[-1]["speaker"] if updated_list else None

        if vad["end"] - vad["start"] >= MAX_SEGMENT_LENGTH:
            current_start = vad["start"]
            segment_end = vad["end"]
            logger.warning(
                f"cut_by_speaker_label > segment longer than 30s, force trimming to 30s smaller segments"
            )
            while segment_end - current_start >= MAX_SEGMENT_LENGTH:
                vad["end"] = current_start + MAX_SEGMENT_LENGTH  # update end time
                updated_list.append(vad)
                vad = vad.copy()
                current_start += MAX_SEGMENT_LENGTH
                vad["start"] = current_start  # update start time
                vad["end"] = segment_end
            updated_list.append(vad)
            continue

        if (
            last_speaker is None
            or last_speaker != vad["speaker"]
            or vad["end"] - vad["start"] >= MIN_SEGMENT_LENGTH
        ):
            updated_list.append(vad)
            continue

        if (
            vad["start"] - last_end_time >= MERGE_GAP
            or vad["end"] - last_start_time >= MAX_SEGMENT_LENGTH
        ):
            updated_list.append(vad)
        else:
            updated_list[-1]["end"] = vad["end"]  # merge the time

    logger.debug(
        f"cut_by_speaker_label > merged {len(vad_list) - len(updated_list)} segments"
    )

    filter_list = [
        vad for vad in updated_list if vad["end"] - vad["start"] >= MIN_SEGMENT_LENGTH
    ]

    logger.debug(
        f"cut_by_speaker_label > removed: {len(updated_list) - len(filter_list)} segments by length"
    )

    return filter_list


@time_logger
def asr(vad_segments, audio):
    """
    Perform Automatic Speech Recognition (ASR) on the VAD segments of the given audio.

    Args:
        vad_segments (list): List of VAD segments with start and end times.
        audio (dict): A dictionary containing the audio waveform and sample rate.

    Returns:
        list: A list of ASR results with transcriptions and language details.
    """
    if len(vad_segments) == 0:
        return []

    temp_audio = audio["waveform"]
    start_time = vad_segments[0]["start"]
    end_time = vad_segments[-1]["end"]
    start_frame = int(start_time * audio["sample_rate"])
    end_frame = int(end_time * audio["sample_rate"])
    temp_audio = temp_audio[start_frame:end_frame]  # remove silent start and end

    # update vad_segments start and end time (this is a little trick for batched asr:)
    for idx, segment in enumerate(vad_segments):
        vad_segments[idx]["start"] -= start_time
        vad_segments[idx]["end"] -= start_time

    # resample to 16k
    temp_audio = librosa.resample(
        temp_audio, orig_sr=audio["sample_rate"], target_sr=16000
    )

    if multilingual_flag:
        logger.debug("Multilingual flag is on")
        valid_vad_segments, valid_vad_segments_language = [], []
        # get valid segments to be transcripted
        for idx, segment in enumerate(vad_segments):
            start_frame = int(segment["start"] * 16000)
            end_frame = int(segment["end"] * 16000)
            segment_audio = temp_audio[start_frame:end_frame]
            language, prob = asr_model.detect_language(segment_audio)
            # 1. if language is in supported list, 2. if prob > 0.8
            if language in supported_languages and prob > 0.8:
                valid_vad_segments.append(vad_segments[idx])
                valid_vad_segments_language.append(language)

        # if no valid segment, return empty
        if len(valid_vad_segments) == 0:
            return []
        all_transcribe_result = []
        logger.debug(f"valid_vad_segments_language: {valid_vad_segments_language}")
        unique_languages = list(set(valid_vad_segments_language))
        logger.debug(f"unique_languages: {unique_languages}")
        # process each language one by one
        for language_token in unique_languages:
            language = language_token
            # filter out segments with different language
            vad_segments = [
                valid_vad_segments[i]
                for i, x in enumerate(valid_vad_segments_language)
                if x == language
            ]
            # bacthed trascription
            transcribe_result_temp = asr_model.transcribe(
                temp_audio,
                vad_segments,
                batch_size=batch_size,
                language=language,
                print_progress=True,
            )
            result = transcribe_result_temp["segments"]
            # restore the segment annotation
            for idx, segment in enumerate(result):
                result[idx]["start"] += start_time
                result[idx]["end"] += start_time
                result[idx]["language"] = transcribe_result_temp["language"]
            all_transcribe_result.extend(result)
        # sort by start time
        all_transcribe_result = sorted(all_transcribe_result, key=lambda x: x["start"])
        return all_transcribe_result
    else:
        logger.debug("Multilingual flag is off")
        language, prob = asr_model.detect_language(temp_audio)
        if language in supported_languages and prob > 0.8:
            transcribe_result = asr_model.transcribe(
                temp_audio,
                vad_segments,
                batch_size=batch_size,
                language=language,
                print_progress=True,
            )
            result = transcribe_result["segments"]
            for idx, segment in enumerate(result):
                result[idx]["start"] += start_time
                result[idx]["end"] += start_time
                result[idx]["language"] = transcribe_result["language"]
            return result
        else:
            return []


@time_logger
def mos_prediction(audio, vad_list):
    """
    Predict the Mean Opinion Score (MOS) for the given audio and VAD segments.

    Args:
        audio (dict): A dictionary containing the audio waveform and sample rate.
        vad_list (list): List of VAD segments with start and end times.

    Returns:
        tuple: A tuple containing the average MOS and the updated VAD segments with MOS scores.
    """
    audio = audio["waveform"]
    sample_rate = 16000

    audio = librosa.resample(
        audio, orig_sr=cfg["entrypoint"]["SAMPLE_RATE"], target_sr=sample_rate
    )

    for index, vad in enumerate(tqdm.tqdm(vad_list, desc="DNSMOS")):
        start, end = int(vad["start"] * sample_rate), int(vad["end"] * sample_rate)
        segment = audio[start:end]

        dnsmos = dnsmos_compute_score(segment, sample_rate, False)["OVRL"]

        vad_list[index]["dnsmos"] = dnsmos

    predict_dnsmos = np.mean([vad["dnsmos"] for vad in vad_list])

    logger.debug(f"avg predict_dnsmos for whole audio: {predict_dnsmos}")

    return predict_dnsmos, vad_list


def filter(mos_list):
    """
    Filter out the segments with MOS scores, wrong char duration, and total duration.

    Args:
        mos_list (list): List of VAD segments with MOS scores.

    Returns:
        list: A list of VAD segments with MOS scores above the average MOS.
    """
    filtered_audio_stats, all_audio_stats = calculate_audio_stats(mos_list)
    filtered_segment = len(filtered_audio_stats)
    all_segment = len(all_audio_stats)
    logger.debug(
        f"> {all_segment - filtered_segment}/{all_segment} {(all_segment - filtered_segment) / all_segment:.2%} segments filtered."
    )
    filtered_list = [mos_list[idx] for idx, _ in filtered_audio_stats]
    return filtered_list


def main_process(audio_path, save_path=None, audio_name=None):
    """
    Process the audio file, including standardization, source separation, speaker segmentation, VAD, ASR, export to MP3, and MOS prediction.

    Args:
        audio_path (str): Audio file path.
        save_path (str, optional): Save path, defaults to None, which means saving in the "_processed" folder in the audio file's directory.
        audio_name (str, optional): Audio file name, defaults to None, which means using the file name from the audio file path.

    Returns:
        tuple: Contains the save path and the MOS list.
    """
    if not audio_path.endswith((".mp3", ".wav", ".flac", ".m4a", ".aac")):
        logger.warning(f"Unsupported file type: {audio_path}")

    # for a single audio from path รaaa/bbb/ccc.wav ---> save to aaa/bbb_processed/ccc/ccc_0.wav
    audio_name = audio_name or os.path.splitext(os.path.basename(audio_path))[0]
    save_path = save_path or os.path.join(
        os.path.dirname(audio_path) + "_processed", audio_name
    )
    os.makedirs(save_path, exist_ok=True)
    logger.debug(
        f"Processing audio: {audio_name}, from {audio_path}, save to: {save_path}"
    )

    logger.info(
        "Step 0: Preprocess all audio files --> 24k sample rate + wave format + loudnorm + bit depth 16"
    )
    audio = standardization(audio_path)

    logger.info("Step 1: Source Separation")
    audio = source_separation(separate_predictor1, audio)

    logger.info("Step 2: Speaker Diarization")
    speakerdia = speaker_diarization(audio)

    logger.info("Step 3: Fine-grained Segmentation by VAD")
    vad_list = vad.vad(speakerdia, audio)
    segment_list = cut_by_speaker_label(vad_list)  # post process after vad

    logger.info("Step 4: ASR")
    asr_result = asr(segment_list, audio)

    logger.info("Step 5: Filter")
    logger.info("Step 5.1: calculate mos_prediction")
    avg_mos, mos_list = mos_prediction(audio, asr_result)

    logger.info(f"Step 5.1: done, average MOS: {avg_mos}")

    logger.info("Step 5.2: Filter out files with less than average MOS")
    filtered_list = filter(mos_list)

    logger.info("Step 6: write result into MP3 and JSON file")
    export_to_mp3(audio, filtered_list, save_path, audio_name)

    final_path = os.path.join(save_path, audio_name + ".json")
    with open(final_path, "w") as f:
        json.dump(filtered_list, f, ensure_ascii=False)

    logger.info(f"All done, Saved to: {final_path}")
    return final_path, filtered_list


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_folder_path",
        type=str,
        default="",
        help="input folder path, this will override config if set",
    )
    parser.add_argument(
        "--config_path", type=str, default="config.json", help="config path"
    )
    parser.add_argument("--batch_size", type=int, default=16, help="batch size")
    parser.add_argument(
        "--compute_type",
        type=str,
        default="float16",
        help="The compute type to use for the model",
    )
    parser.add_argument(
        "--whisper_arch",
        type=str,
        default="medium",
        help="The name of the Whisper model to load.",
    )
    parser.add_argument(
        "--threads",
        type=int,
        default=4,
        help="The number of CPU threads to use per worker, e.g. will be multiplied by num workers.",
    )
    parser.add_argument(
        "--exit_pipeline",
        type=bool,
        default=False,
        help="Exit pipeline when task done.",
    )
    args = parser.parse_args()

    batch_size = args.batch_size
    cfg = load_cfg(args.config_path)

    logger = Logger.get_logger()

    if args.input_folder_path:
        logger.info(f"Using input folder path: {args.input_folder_path}")
        cfg["entrypoint"]["input_folder_path"] = args.input_folder_path

    logger.debug("Loading models...")

    # Load models
    if detect_gpu():
        logger.info("Using GPU")
        device_name = "cuda"
        device = torch.device(device_name)
    else:
        logger.info("Using CPU")
        device_name = "cpu"
        device = torch.device(device_name)

    check_env(logger)

    # Speaker Diarization
    logger.debug(" * Loading Speaker Diarization Model")
    if not cfg["huggingface_token"].startswith("hf"):
        raise ValueError(
            "huggingface_token must start with 'hf', check the config file. "
            "You can get the token at https://huggingface.co/settings/tokens. "
            "Remeber grant access following https://github.com/pyannote/pyannote-audio?tab=readme-ov-file#tldr"
        )
    dia_pipeline = Pipeline.from_pretrained(
        "pyannote/speaker-diarization-3.1",
        use_auth_token=cfg["huggingface_token"],
    )
    dia_pipeline.to(device)

    # ASR
    logger.debug(" * Loading ASR Model")
    asr_model = whisper_asr.load_asr_model(
        args.whisper_arch,
        device_name,
        compute_type=args.compute_type,
        threads=args.threads,
        asr_options={
            "initial_prompt": "Um, Uh, Ah. Like, you know. I mean, right. Actually. Basically, and right? okay. Alright. Emm. So. Oh. ็”ŸไบŽๅฟงๆ‚ฃ,ๆญปไบŽๅฎ‰ไนใ€‚ๅฒ‚ไธๅฟซๅ“‰?ๅฝ“็„ถ,ๅ—ฏ,ๅ‘ƒ,ๅฐฑ,่ฟ™ๆ ท,้‚ฃไธช,ๅ“ชไธช,ๅ•Š,ๅ‘€,ๅ“Žๅ‘€,ๅ“Žๅ“Ÿ,ๅ”‰ๅ“‡,ๅ•ง,ๅ”ท,ๅ“Ÿ,ๅ™ซ!ๅพฎๆ–ฏไบบ,ๅพ่ฐไธŽๅฝ’?ใˆใˆใจใ€ใ‚ใฎใ€ใพใ€ใใ†ใ€ใˆใˆใ€‚รคh, hm, so, tja, halt, eigentlich. euh, quoi, bah, ben, tu vois, tu sais, t'sais, eh bien, du coup. genre, comme, style. ์‘,์–ด,๊ทธ,์Œ."
        },
    )

    # VAD
    logger.debug(" * Loading VAD Model")
    vad = silero_vad.SileroVAD(device=device)

    # Background Noise Separation
    logger.debug(" * Loading Background Noise Model")
    separate_predictor1 = separate_fast.Predictor(
        args=cfg["separate"]["step1"], device=device_name
    )

    # DNSMOS Scoring
    logger.debug(" * Loading DNSMOS Model")
    primary_model_path = cfg["mos_model"]["primary_model_path"]
    dnsmos_compute_score = dnsmos.ComputeScore(primary_model_path, device_name)
    logger.debug("All models loaded")

    supported_languages = cfg["language"]["supported"]
    multilingual_flag = cfg["language"]["multilingual"]
    logger.debug(f"supported languages multilingual {supported_languages}")
    logger.debug(f"using multilingual asr {multilingual_flag}")

    input_folder_path = cfg["entrypoint"]["input_folder_path"]

    if not os.path.exists(input_folder_path):
        raise FileNotFoundError(f"input_folder_path: {input_folder_path} not found")

    audio_paths = get_audio_files(input_folder_path)  # Get all audio files
    logger.debug(f"Scanning {len(audio_paths)} audio files in {input_folder_path}")

    for path in audio_paths:
        main_process(path)