File size: 7,697 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import random
import numpy as np
from torch.nn import functional as F
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from models.vocoders.vocoder_dataset import VocoderDataset
class GANVocoderDataset(VocoderDataset):
def __init__(self, cfg, dataset, is_valid=False):
"""
Args:
cfg: config
dataset: dataset name
is_valid: whether to use train or valid dataset
"""
super().__init__(cfg, dataset, is_valid)
eval_index = random.randint(0, len(self.metadata) - 1)
eval_utt_info = self.metadata[eval_index]
eval_utt = "{}_{}".format(eval_utt_info["Dataset"], eval_utt_info["Uid"])
self.eval_audio = np.load(self.utt2audio_path[eval_utt])
if cfg.preprocess.use_mel:
self.eval_mel = np.load(self.utt2mel_path[eval_utt])
if cfg.preprocess.use_frame_pitch:
self.eval_pitch = np.load(self.utt2frame_pitch_path[eval_utt])
def __getitem__(self, index):
utt_info = self.metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
single_feature = dict()
if self.cfg.preprocess.use_mel:
mel = np.load(self.utt2mel_path[utt])
assert mel.shape[0] == self.cfg.preprocess.n_mel
if "target_len" not in single_feature.keys():
single_feature["target_len"] = mel.shape[1]
if single_feature["target_len"] <= self.cfg.preprocess.cut_mel_frame:
mel = np.pad(
mel,
((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
mode="constant",
)
else:
if "start" not in single_feature.keys():
start = random.randint(
0, mel.shape[-1] - self.cfg.preprocess.cut_mel_frame
)
end = start + self.cfg.preprocess.cut_mel_frame
single_feature["start"] = start
single_feature["end"] = end
mel = mel[:, single_feature["start"] : single_feature["end"]]
single_feature["mel"] = mel
if self.cfg.preprocess.use_frame_pitch:
frame_pitch = np.load(self.utt2frame_pitch_path[utt])
if "target_len" not in single_feature.keys():
single_feature["target_len"] = len(frame_pitch)
aligned_frame_pitch = align_length(
frame_pitch, single_feature["target_len"]
)
if single_feature["target_len"] <= self.cfg.preprocess.cut_mel_frame:
aligned_frame_pitch = np.pad(
aligned_frame_pitch,
(
(
0,
self.cfg.preprocess.cut_mel_frame
* self.cfg.preprocess.hop_size
- audio.shape[-1],
)
),
mode="constant",
)
else:
if "start" not in single_feature.keys():
start = random.randint(
0,
aligned_frame_pitch.shape[-1]
- self.cfg.preprocess.cut_mel_frame,
)
end = start + self.cfg.preprocess.cut_mel_frame
single_feature["start"] = start
single_feature["end"] = end
aligned_frame_pitch = aligned_frame_pitch[
single_feature["start"] : single_feature["end"]
]
single_feature["frame_pitch"] = aligned_frame_pitch
if self.cfg.preprocess.use_audio:
audio = np.load(self.utt2audio_path[utt])
assert "target_len" in single_feature.keys()
if (
audio.shape[-1]
<= self.cfg.preprocess.cut_mel_frame * self.cfg.preprocess.hop_size
):
audio = np.pad(
audio,
(
(
0,
self.cfg.preprocess.cut_mel_frame
* self.cfg.preprocess.hop_size
- audio.shape[-1],
)
),
mode="constant",
)
else:
if "start" not in single_feature.keys():
audio = audio[
0 : self.cfg.preprocess.cut_mel_frame
* self.cfg.preprocess.hop_size
]
else:
audio = audio[
single_feature["start"]
* self.cfg.preprocess.hop_size : single_feature["end"]
* self.cfg.preprocess.hop_size,
]
single_feature["audio"] = audio
if self.cfg.preprocess.use_amplitude_phase:
logamp = np.load(self.utt2logamp_path[utt])
pha = np.load(self.utt2pha_path[utt])
rea = np.load(self.utt2rea_path[utt])
imag = np.load(self.utt2imag_path[utt])
assert "target_len" in single_feature.keys()
if single_feature["target_len"] <= self.cfg.preprocess.cut_mel_frame:
logamp = np.pad(
logamp,
((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
mode="constant",
)
pha = np.pad(
pha,
((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
mode="constant",
)
rea = np.pad(
rea,
((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
mode="constant",
)
imag = np.pad(
imag,
((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
mode="constant",
)
else:
logamp = logamp[:, single_feature["start"] : single_feature["end"]]
pha = pha[:, single_feature["start"] : single_feature["end"]]
rea = rea[:, single_feature["start"] : single_feature["end"]]
imag = imag[:, single_feature["start"] : single_feature["end"]]
single_feature["logamp"] = logamp
single_feature["pha"] = pha
single_feature["rea"] = rea
single_feature["imag"] = imag
return single_feature
class GANVocoderCollator(object):
"""Zero-pads model inputs and targets based on number of frames per step"""
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, batch):
packed_batch_features = dict()
# mel: [b, n_mels, frame]
# frame_pitch: [b, frame]
# audios: [b, frame * hop_size]
for key in batch[0].keys():
if key in ["target_len", "start", "end"]:
continue
else:
values = [torch.from_numpy(b[key]) for b in batch]
packed_batch_features[key] = pad_sequence(
values, batch_first=True, padding_value=0
)
return packed_batch_features
|