File size: 19,575 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
from typing import Optional, Tuple
import torch
from torch import Tensor
from torch.nn import Linear, Module
from torch.nn import functional as F
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from torch.nn.parameter import Parameter
class MultiheadAttention(Module):
r"""Allows the model to jointly attend to information
from different representation subspaces as described in the paper:
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
Multi-Head Attention is defined as:
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
``forward()`` will use a special optimized implementation if all of the following
conditions are met:
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
restriction will be loosened in the future.)
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
- training is disabled (using ``.eval()``)
- dropout is 0
- ``add_bias_kv`` is ``False``
- ``add_zero_attn`` is ``False``
- ``batch_first`` is ``True`` and the input is batched
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
nor ``attn_mask`` is passed
If the optimized implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
``query``/``key``/``value`` to represent padding more efficiently than using a
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
will be returned, and an additional speedup proportional to the fraction of the input
that is padding can be expected.
Args:
embed_dim: Total dimension of the model.
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
Default: ``False``.
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
Examples::
>>> # xdoctest: +SKIP
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__constants__ = ["batch_first"]
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
linear1_cls=Linear,
linear2_cls=Linear,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
if add_bias_kv:
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
else:
self.bias_k = self.bias_v = None
if linear1_cls == Linear:
if not self._qkv_same_embed_dim:
self.q_proj_weight = Parameter(
torch.empty((embed_dim, embed_dim), **factory_kwargs)
)
self.k_proj_weight = Parameter(
torch.empty((embed_dim, self.kdim), **factory_kwargs)
)
self.v_proj_weight = Parameter(
torch.empty((embed_dim, self.vdim), **factory_kwargs)
)
self.register_parameter("in_proj_weight", None)
else:
self.in_proj_weight = Parameter(
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
)
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if bias:
self.in_proj_bias = Parameter(
torch.empty(3 * embed_dim, **factory_kwargs)
)
else:
self.register_parameter("in_proj_bias", None)
self.out_proj = NonDynamicallyQuantizableLinear(
embed_dim, embed_dim, bias=bias, **factory_kwargs
)
self._reset_parameters()
else:
if not self._qkv_same_embed_dim:
raise NotImplementedError
else:
self.in_proj_linear = linear1_cls(
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
)
self.in_proj_weight = self.in_proj_linear.weight
self.register_parameter("q_proj_weight", None)
self.register_parameter("k_proj_weight", None)
self.register_parameter("v_proj_weight", None)
if bias:
self.in_proj_bias = self.in_proj_linear.bias
else:
self.register_parameter("in_proj_bias", None)
self.out_proj = linear2_cls(
embed_dim, embed_dim, bias=bias, **factory_kwargs
)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
self.add_zero_attn = add_zero_attn
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.0)
constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
if "_qkv_same_embed_dim" not in state:
state["_qkv_same_embed_dim"] = True
super(MultiheadAttention, self).__setstate__(state)
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
average_attn_weights: bool = True,
) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
Queries are compared against key-value pairs to produce the output.
See "Attention Is All You Need" for more details.
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
See "Attention Is All You Need" for more details.
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
See "Attention Is All You Need" for more details.
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
Binary and byte masks are supported.
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
Default: ``True``.
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
the attention weight.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
Outputs:
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
embedding dimension ``embed_dim``.
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
.. note::
`batch_first` argument is ignored for unbatched inputs.
"""
is_batched = query.dim() == 3
if key_padding_mask is not None:
_kpm_dtype = key_padding_mask.dtype
if _kpm_dtype != torch.bool and not torch.is_floating_point(
key_padding_mask
):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
why_not_fast_path = ""
if not is_batched:
why_not_fast_path = (
f"input not batched; expected query.dim() of 3 but got {query.dim()}"
)
elif query is not key or key is not value:
# When lifting this restriction, don't forget to either
# enforce that the dtypes all match or test cases where
# they don't!
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
elif (
self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
):
# this case will fail anyway, but at least they'll get a useful error message.
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
elif self.training:
why_not_fast_path = "training is enabled"
elif not self.batch_first:
why_not_fast_path = "batch_first was not True"
elif self.bias_k is not None:
why_not_fast_path = "self.bias_k was not None"
elif self.bias_v is not None:
why_not_fast_path = "self.bias_v was not None"
elif self.dropout:
why_not_fast_path = f"dropout was {self.dropout}, required zero"
elif self.add_zero_attn:
why_not_fast_path = "add_zero_attn was enabled"
elif not self._qkv_same_embed_dim:
why_not_fast_path = "_qkv_same_embed_dim was not True"
elif attn_mask is not None:
why_not_fast_path = "attn_mask was not None"
elif query.is_nested and key_padding_mask is not None:
why_not_fast_path = (
"key_padding_mask is not supported with NestedTensor input"
)
elif self.num_heads % 2 == 1:
why_not_fast_path = "num_heads is odd"
elif torch.is_autocast_enabled():
why_not_fast_path = "autocast is enabled"
if not why_not_fast_path:
tensor_args = (
query,
key,
value,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
)
# We have to use list comprehensions below because TorchScript does not support
# generator expressions.
if torch.overrides.has_torch_function(tensor_args):
why_not_fast_path = "some Tensor argument has_torch_function"
elif not all(
[
(x is None or x.is_cuda or "cpu" in str(x.device))
for x in tensor_args
]
):
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
elif torch.is_grad_enabled() and any(
[x is not None and x.requires_grad for x in tensor_args]
):
why_not_fast_path = (
"grad is enabled and at least one of query or the "
"input/output projection weights or biases requires_grad"
)
if not why_not_fast_path:
return torch._native_multi_head_attention(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj.weight,
self.out_proj.bias,
key_padding_mask if key_padding_mask is not None else attn_mask,
need_weights,
average_attn_weights,
(
1
if key_padding_mask is not None
else 0 if attn_mask is not None else None
),
)
any_nested = query.is_nested or key.is_nested or value.is_nested
assert not any_nested, (
"MultiheadAttention does not support NestedTensor outside of its fast path. "
+ f"The fast path was not hit because {why_not_fast_path}"
)
if self.batch_first and is_batched:
# make sure that the transpose op does not affect the "is" property
if key is value:
if query is key:
query = key = value = query.transpose(1, 0)
else:
query, key = [x.transpose(1, 0) for x in (query, key)]
value = key
else:
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
average_attn_weights=average_attn_weights,
)
else:
attn_output, attn_output_weights = F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask,
average_attn_weights=average_attn_weights,
)
if self.batch_first and is_batched:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights
|