|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import time |
|
import torch |
|
import json |
|
import itertools |
|
import accelerate |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from tqdm import tqdm |
|
from torch.nn.parallel import DistributedDataParallel |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
from torch.optim import AdamW |
|
from torch.optim.lr_scheduler import ExponentialLR |
|
|
|
from librosa.filters import mel as librosa_mel_fn |
|
|
|
from accelerate.logging import get_logger |
|
from pathlib import Path |
|
|
|
from utils.io import save_audio |
|
from utils.data_utils import * |
|
from utils.util import ( |
|
Logger, |
|
ValueWindow, |
|
remove_older_ckpt, |
|
set_all_random_seed, |
|
save_config, |
|
) |
|
from utils.mel import extract_mel_features |
|
from models.vocoders.vocoder_trainer import VocoderTrainer |
|
from models.vocoders.diffusion.diffusion_vocoder_dataset import ( |
|
DiffusionVocoderDataset, |
|
DiffusionVocoderCollator, |
|
) |
|
|
|
from models.vocoders.diffusion.diffwave.diffwave import DiffWave |
|
|
|
from models.vocoders.diffusion.diffusion_vocoder_inference import vocoder_inference |
|
|
|
supported_models = { |
|
"diffwave": DiffWave, |
|
} |
|
|
|
|
|
class DiffusionVocoderTrainer(VocoderTrainer): |
|
def __init__(self, args, cfg): |
|
super().__init__() |
|
|
|
self.args = args |
|
self.cfg = cfg |
|
|
|
cfg.exp_name = args.exp_name |
|
|
|
|
|
self.cfg.model.diffwave.noise_schedule = np.linspace( |
|
self.cfg.model.diffwave.noise_schedule_factors[0], |
|
self.cfg.model.diffwave.noise_schedule_factors[1], |
|
self.cfg.model.diffwave.noise_schedule_factors[2], |
|
) |
|
beta = np.array(self.cfg.model.diffwave.noise_schedule) |
|
noise_level = np.cumprod(1 - beta) |
|
self.noise_level = torch.tensor(noise_level.astype(np.float32)) |
|
|
|
|
|
self._init_accelerator() |
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger = get_logger(args.exp_name, log_level=args.log_level) |
|
|
|
self.logger.info("=" * 56) |
|
self.logger.info("||\t\t" + "New training process started." + "\t\t||") |
|
self.logger.info("=" * 56) |
|
self.logger.info("\n") |
|
self.logger.debug(f"Using {args.log_level.upper()} logging level.") |
|
self.logger.info(f"Experiment name: {args.exp_name}") |
|
self.logger.info(f"Experiment directory: {self.exp_dir}") |
|
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") |
|
if self.accelerator.is_main_process: |
|
os.makedirs(self.checkpoint_dir, exist_ok=True) |
|
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") |
|
|
|
|
|
self.batch_count: int = 0 |
|
self.step: int = 0 |
|
self.epoch: int = 0 |
|
|
|
self.max_epoch = ( |
|
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") |
|
) |
|
self.logger.info( |
|
"Max epoch: {}".format( |
|
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" |
|
) |
|
) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
self._check_basic_configs() |
|
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride |
|
self.checkpoints_path = [ |
|
[] for _ in range(len(self.save_checkpoint_stride)) |
|
] |
|
self.run_eval = self.cfg.train.run_eval |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
start = time.monotonic_ns() |
|
self._set_random_seed(self.cfg.train.random_seed) |
|
end = time.monotonic_ns() |
|
self.logger.debug( |
|
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building dataset...") |
|
start = time.monotonic_ns() |
|
self.train_dataloader, self.valid_dataloader = self._build_dataloader() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building model...") |
|
start = time.monotonic_ns() |
|
self.model = self._build_model() |
|
end = time.monotonic_ns() |
|
self.logger.debug(self.model) |
|
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") |
|
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building optimizer and scheduler...") |
|
start = time.monotonic_ns() |
|
self.optimizer = self._build_optimizer() |
|
self.scheduler = self._build_scheduler() |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
|
|
|
|
self.logger.info("Initializing accelerate...") |
|
start = time.monotonic_ns() |
|
( |
|
self.train_dataloader, |
|
self.valid_dataloader, |
|
self.model, |
|
self.optimizer, |
|
self.scheduler, |
|
) = self.accelerator.prepare( |
|
self.train_dataloader, |
|
self.valid_dataloader, |
|
self.model, |
|
self.optimizer, |
|
self.scheduler, |
|
) |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building criterion...") |
|
start = time.monotonic_ns() |
|
self.criterion = self._build_criterion() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
if args.resume_type: |
|
self.logger.info("Resuming from checkpoint...") |
|
start = time.monotonic_ns() |
|
ckpt_path = Path(args.checkpoint) |
|
if self._is_valid_pattern(ckpt_path.parts[-1]): |
|
ckpt_path = self._load_model( |
|
None, args.checkpoint, args.resume_type |
|
) |
|
else: |
|
ckpt_path = self._load_model( |
|
args.checkpoint, resume_type=args.resume_type |
|
) |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.checkpoints_path = json.load( |
|
open(os.path.join(ckpt_path, "ckpts.json"), "r") |
|
) |
|
|
|
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") |
|
if self.accelerator.is_main_process: |
|
os.makedirs(self.checkpoint_dir, exist_ok=True) |
|
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") |
|
|
|
|
|
self.config_save_path = os.path.join(self.exp_dir, "args.json") |
|
|
|
|
|
self.device = next(self.model.parameters()).device |
|
self.noise_level = self.noise_level.to(self.device) |
|
|
|
def _build_dataset(self): |
|
return DiffusionVocoderDataset, DiffusionVocoderCollator |
|
|
|
def _build_criterion(self): |
|
criterion = nn.L1Loss() |
|
return criterion |
|
|
|
def _build_model(self): |
|
model = supported_models[self.cfg.model.generator](self.cfg) |
|
return model |
|
|
|
def _build_optimizer(self): |
|
optimizer = AdamW( |
|
self.model.parameters(), |
|
lr=self.cfg.train.adamw.lr, |
|
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2), |
|
) |
|
return optimizer |
|
|
|
def _build_scheduler(self): |
|
scheduler = ExponentialLR( |
|
self.optimizer, |
|
gamma=self.cfg.train.exponential_lr.lr_decay, |
|
last_epoch=self.epoch - 1, |
|
) |
|
return scheduler |
|
|
|
def train_loop(self): |
|
"""Training process""" |
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
self._dump_cfg(self.config_save_path) |
|
self.model.train() |
|
self.optimizer.zero_grad() |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
while self.epoch < self.max_epoch: |
|
self.logger.info("\n") |
|
self.logger.info("-" * 32) |
|
self.logger.info("Epoch {}: ".format(self.epoch)) |
|
|
|
|
|
train_total_loss = self._train_epoch() |
|
valid_total_loss = self._valid_epoch() |
|
self.accelerator.log( |
|
{ |
|
"Epoch/Train Total Loss": train_total_loss, |
|
"Epoch/Valid Total Loss": valid_total_loss, |
|
}, |
|
step=self.epoch, |
|
) |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
self.scheduler.step() |
|
|
|
|
|
run_eval = False |
|
if self.accelerator.is_main_process: |
|
save_checkpoint = False |
|
for i, num in enumerate(self.save_checkpoint_stride): |
|
if self.epoch % num == 0: |
|
save_checkpoint = True |
|
run_eval |= self.run_eval[i] |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
if self.accelerator.is_main_process and save_checkpoint: |
|
path = os.path.join( |
|
self.checkpoint_dir, |
|
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( |
|
self.epoch, self.step, valid_total_loss |
|
), |
|
) |
|
self.accelerator.save_state(path) |
|
json.dump( |
|
self.checkpoints_path, |
|
open(os.path.join(path, "ckpts.json"), "w"), |
|
ensure_ascii=False, |
|
indent=4, |
|
) |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
if self.accelerator.is_main_process and run_eval: |
|
for i in range(len(self.valid_dataloader.dataset.eval_audios)): |
|
if self.cfg.preprocess.use_frame_pitch: |
|
eval_audio = self._inference( |
|
self.valid_dataloader.dataset.eval_mels[i], |
|
eval_pitch=self.valid_dataloader.dataset.eval_pitchs[i], |
|
use_pitch=True, |
|
) |
|
else: |
|
eval_audio = self._inference( |
|
self.valid_dataloader.dataset.eval_mels[i] |
|
) |
|
path = os.path.join( |
|
self.checkpoint_dir, |
|
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}.wav".format( |
|
self.epoch, |
|
self.step, |
|
valid_total_loss, |
|
self.valid_dataloader.dataset.eval_dataset_names[i], |
|
), |
|
) |
|
path_gt = os.path.join( |
|
self.checkpoint_dir, |
|
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}_gt.wav".format( |
|
self.epoch, |
|
self.step, |
|
valid_total_loss, |
|
self.valid_dataloader.dataset.eval_dataset_names[i], |
|
), |
|
) |
|
save_audio(path, eval_audio, self.cfg.preprocess.sample_rate) |
|
save_audio( |
|
path_gt, |
|
self.valid_dataloader.dataset.eval_audios[i], |
|
self.cfg.preprocess.sample_rate, |
|
) |
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
self.epoch += 1 |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
path = os.path.join( |
|
self.checkpoint_dir, |
|
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( |
|
self.epoch, self.step, valid_total_loss |
|
), |
|
) |
|
self.accelerator.save_state(path) |
|
|
|
def _train_epoch(self): |
|
"""Training epoch. Should return average loss of a batch (sample) over |
|
one epoch. See ``train_loop`` for usage. |
|
""" |
|
self.model.train() |
|
|
|
epoch_total_loss: int = 0 |
|
|
|
for batch in tqdm( |
|
self.train_dataloader, |
|
desc=f"Training Epoch {self.epoch}", |
|
unit="batch", |
|
colour="GREEN", |
|
leave=False, |
|
dynamic_ncols=True, |
|
smoothing=0.04, |
|
disable=not self.accelerator.is_main_process, |
|
): |
|
|
|
total_loss = self._train_step(batch) |
|
self.batch_count += 1 |
|
|
|
|
|
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: |
|
self.accelerator.log( |
|
{ |
|
"Step/Learning Rate": self.optimizer.param_groups[0]["lr"], |
|
}, |
|
step=self.step, |
|
) |
|
epoch_total_loss += total_loss |
|
self.step += 1 |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
epoch_total_loss = ( |
|
epoch_total_loss |
|
/ len(self.train_dataloader) |
|
* self.cfg.train.gradient_accumulation_step |
|
) |
|
return epoch_total_loss |
|
|
|
def _train_step(self, data): |
|
"""Training forward step. Should return average loss of a sample over |
|
one batch. Provoke ``_forward_step`` is recommended except for special case. |
|
See ``_train_epoch`` for usage. |
|
""" |
|
|
|
total_loss = 0 |
|
|
|
|
|
mel_input = data["mel"] |
|
audio_gt = data["audio"] |
|
|
|
if self.cfg.preprocess.use_frame_pitch: |
|
pitch_input = data["frame_pitch"] |
|
|
|
self.optimizer.zero_grad() |
|
N = audio_gt.shape[0] |
|
t = torch.randint( |
|
0, len(self.cfg.model.diffwave.noise_schedule), [N], device=self.device |
|
) |
|
noise_scale = self.noise_level[t].unsqueeze(1) |
|
noise_scale_sqrt = noise_scale**0.5 |
|
noise = torch.randn_like(audio_gt).to(self.device) |
|
noisy_audio = noise_scale_sqrt * audio_gt + (1.0 - noise_scale) ** 0.5 * noise |
|
|
|
audio_pred = self.model(noisy_audio, t, mel_input) |
|
total_loss = self.criterion(noise, audio_pred.squeeze(1)) |
|
|
|
self.accelerator.backward(total_loss) |
|
self.optimizer.step() |
|
|
|
return total_loss.item() |
|
|
|
def _valid_epoch(self): |
|
"""Testing epoch. Should return average loss of a batch (sample) over |
|
one epoch. See ``train_loop`` for usage. |
|
""" |
|
self.model.eval() |
|
|
|
epoch_total_loss: int = 0 |
|
|
|
for batch in tqdm( |
|
self.valid_dataloader, |
|
desc=f"Validating Epoch {self.epoch}", |
|
unit="batch", |
|
colour="GREEN", |
|
leave=False, |
|
dynamic_ncols=True, |
|
smoothing=0.04, |
|
disable=not self.accelerator.is_main_process, |
|
): |
|
|
|
total_loss = self._valid_step(batch) |
|
|
|
|
|
epoch_total_loss += total_loss |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
epoch_total_loss = epoch_total_loss / len(self.valid_dataloader) |
|
return epoch_total_loss |
|
|
|
def _valid_step(self, data): |
|
"""Testing forward step. Should return average loss of a sample over |
|
one batch. Provoke ``_forward_step`` is recommended except for special case. |
|
See ``_test_epoch`` for usage. |
|
""" |
|
|
|
total_loss = 0 |
|
|
|
|
|
mel_input = data["mel"] |
|
audio_gt = data["audio"] |
|
|
|
if self.cfg.preprocess.use_frame_pitch: |
|
pitch_input = data["frame_pitch"] |
|
|
|
N = audio_gt.shape[0] |
|
t = torch.randint( |
|
0, len(self.cfg.model.diffwave.noise_schedule), [N], device=self.device |
|
) |
|
noise_scale = self.noise_level[t].unsqueeze(1) |
|
noise_scale_sqrt = noise_scale**0.5 |
|
noise = torch.randn_like(audio_gt) |
|
noisy_audio = noise_scale_sqrt * audio_gt + (1.0 - noise_scale) ** 0.5 * noise |
|
|
|
audio_pred = self.model(noisy_audio, t, mel_input) |
|
total_loss = self.criterion(noise, audio_pred.squeeze(1)) |
|
|
|
return total_loss.item() |
|
|
|
def _inference(self, eval_mel, eval_pitch=None, use_pitch=False): |
|
"""Inference during training for test audios.""" |
|
if use_pitch: |
|
eval_pitch = align_length(eval_pitch, eval_mel.shape[1]) |
|
eval_audio = vocoder_inference( |
|
self.cfg, |
|
self.model, |
|
torch.from_numpy(eval_mel).unsqueeze(0), |
|
f0s=torch.from_numpy(eval_pitch).unsqueeze(0).float(), |
|
device=next(self.model.parameters()).device, |
|
).squeeze(0) |
|
else: |
|
eval_audio = vocoder_inference( |
|
self.cfg, |
|
self.model, |
|
torch.from_numpy(eval_mel).unsqueeze(0), |
|
device=next(self.model.parameters()).device, |
|
).squeeze(0) |
|
return eval_audio |
|
|
|
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"): |
|
"""Load model from checkpoint. If checkpoint_path is None, it will |
|
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not |
|
None, it will load the checkpoint specified by checkpoint_path. **Only use this |
|
method after** ``accelerator.prepare()``. |
|
""" |
|
if checkpoint_path is None: |
|
ls = [str(i) for i in Path(checkpoint_dir).glob("*")] |
|
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True) |
|
checkpoint_path = ls[0] |
|
if resume_type == "resume": |
|
self.accelerator.load_state(checkpoint_path) |
|
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1 |
|
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1 |
|
elif resume_type == "finetune": |
|
accelerate.load_checkpoint_and_dispatch( |
|
self.accelerator.unwrap_model(self.model), |
|
os.path.join(checkpoint_path, "pytorch_model.bin"), |
|
) |
|
self.logger.info("Load model weights for finetune SUCCESS!") |
|
else: |
|
raise ValueError("Unsupported resume type: {}".format(resume_type)) |
|
return checkpoint_path |
|
|
|
def _count_parameters(self): |
|
result = sum(p.numel() for p in self.model.parameters()) |
|
return result |
|
|