|
|
|
|
|
|
|
|
|
|
|
import os |
|
import time |
|
import random |
|
from pathlib import Path |
|
import re |
|
import glob |
|
|
|
import accelerate |
|
import json |
|
import numpy as np |
|
import torch |
|
from accelerate.utils import ProjectConfiguration |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
|
|
from accelerate.logging import get_logger |
|
|
|
from models.codec.facodec.facodec_dataset import FAcodecDataset, FAcodecCollator |
|
from models.codec.codec_sampler import build_samplers |
|
from models.codec.codec_trainer import CodecTrainer |
|
|
|
from modules.dac.nn.loss import ( |
|
MultiScaleSTFTLoss, |
|
MelSpectrogramLoss, |
|
GANLoss, |
|
L1Loss, |
|
FocalLoss, |
|
) |
|
from audiotools import AudioSignal |
|
|
|
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC |
|
|
|
try: |
|
import nemo.collections.asr as nemo_asr |
|
except ImportError: |
|
print( |
|
"Unable to import nemo_asr, titanet outputs will be set to random values, you may only run debugging mode. DO NOT USE THIS FOR TRAINING" |
|
) |
|
nemo_asr = None |
|
|
|
from models.codec.facodec.modules.commons import ( |
|
build_model, |
|
load_checkpoint, |
|
load_F0_models, |
|
log_norm, |
|
) |
|
from models.codec.facodec.optimizer import build_optimizer |
|
|
|
|
|
class FAcodecTrainer(CodecTrainer): |
|
def __init__(self, args, cfg): |
|
super().__init__() |
|
|
|
self.args = args |
|
self.cfg = cfg |
|
|
|
cfg.exp_name = args.exp_name |
|
|
|
|
|
self._init_accelerator() |
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger = get_logger(args.exp_name, log_level=args.log_level) |
|
|
|
self.logger.info("=" * 56) |
|
self.logger.info("||\t\t" + "New training process started." + "\t\t||") |
|
self.logger.info("=" * 56) |
|
self.logger.info("\n") |
|
self.logger.debug(f"Using {args.log_level.upper()} logging level.") |
|
self.logger.info(f"Experiment name: {args.exp_name}") |
|
self.logger.info(f"Experiment directory: {self.exp_dir}") |
|
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") |
|
if self.accelerator.is_main_process: |
|
os.makedirs(self.checkpoint_dir, exist_ok=True) |
|
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") |
|
|
|
|
|
self.batch_count: int = 0 |
|
self.step: int = 0 |
|
self.epoch: int = 0 |
|
|
|
self.max_epoch = ( |
|
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") |
|
) |
|
self.logger.info( |
|
"Max epoch: {}".format( |
|
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" |
|
) |
|
) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
self._check_basic_configs() |
|
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride |
|
self.checkpoints_path = [ |
|
[] for _ in range(len(self.save_checkpoint_stride)) |
|
] |
|
self.run_eval = self.cfg.train.run_eval |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
start = time.monotonic_ns() |
|
self._set_random_seed(self.cfg.train.random_seed) |
|
end = time.monotonic_ns() |
|
self.logger.debug( |
|
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building dataset...") |
|
start = time.monotonic_ns() |
|
self.train_dataloader, self.valid_dataloader = self._build_dataloader() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building model...") |
|
start = time.monotonic_ns() |
|
self.model = self._build_model() |
|
end = time.monotonic_ns() |
|
for _, model in self.model.items(): |
|
self.logger.debug(model) |
|
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") |
|
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building optimizer and scheduler...") |
|
start = time.monotonic_ns() |
|
self.optimizer = self._build_optimizer() |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building helper models...") |
|
start = time.monotonic_ns() |
|
self._built_helper_model() |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Building helper models done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
|
|
|
|
self.logger.info("Initializing accelerate...") |
|
start = time.monotonic_ns() |
|
for k in self.model: |
|
self.model[k] = self.accelerator.prepare(self.model[k]) |
|
for k, v in self.optimizer.optimizers.items(): |
|
self.optimizer.optimizers[k] = self.accelerator.prepare( |
|
self.optimizer.optimizers[k] |
|
) |
|
self.optimizer.schedulers[k] = self.accelerator.prepare( |
|
self.optimizer.schedulers[k] |
|
) |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building criterion...") |
|
start = time.monotonic_ns() |
|
self.criterions = self._build_criterion() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") |
|
if args.resume_type: |
|
self.logger.info("Resuming from checkpoint...") |
|
start = time.monotonic_ns() |
|
ckpt_path = Path(args.checkpoint) |
|
if self._is_valid_pattern(ckpt_path.parts[-1]): |
|
ckpt_path = self._load_model(args.checkpoint, args.resume_type) |
|
else: |
|
ckpt_path = self._load_model( |
|
args.checkpoint, resume_type=args.resume_type |
|
) |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.checkpoints_path = json.load( |
|
open(os.path.join(ckpt_path, "ckpts.json"), "r") |
|
) |
|
|
|
if self.accelerator.is_main_process: |
|
os.makedirs(self.checkpoint_dir, exist_ok=True) |
|
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") |
|
|
|
|
|
self.config_save_path = os.path.join(self.exp_dir, "args.json") |
|
|
|
def _build_dataset(self): |
|
return FAcodecDataset, FAcodecCollator |
|
|
|
def _build_criterion(self): |
|
criterions = dict() |
|
stft_criterion = MultiScaleSTFTLoss() |
|
mel_criterion = MelSpectrogramLoss( |
|
n_mels=[5, 10, 20, 40, 80, 160, 320], |
|
window_lengths=[32, 64, 128, 256, 512, 1024, 2048], |
|
mel_fmin=[0, 0, 0, 0, 0, 0, 0], |
|
mel_fmax=[None, None, None, None, None, None, None], |
|
pow=1.0, |
|
mag_weight=0.0, |
|
clamp_eps=1e-5, |
|
) |
|
content_criterion = FocalLoss(gamma=2) |
|
l1_criterion = L1Loss() |
|
criterions["stft"] = stft_criterion |
|
criterions["mel"] = mel_criterion |
|
criterions["l1"] = l1_criterion |
|
criterions["content"] = content_criterion |
|
|
|
return criterions |
|
|
|
def _build_model(self): |
|
model = build_model(self.cfg.model_params) |
|
_ = [model[key].to(self.accelerator.device) for key in model] |
|
return model |
|
|
|
def _built_helper_model(self): |
|
device = self.accelerator.device |
|
self.pitch_extractor = load_F0_models(self.cfg.F0_path).to(device) |
|
|
|
|
|
self.w2v_processor = Wav2Vec2Processor.from_pretrained( |
|
"facebook/wav2vec2-xlsr-53-espeak-cv-ft" |
|
) |
|
self.w2v_model = Wav2Vec2ForCTC.from_pretrained( |
|
"facebook/wav2vec2-xlsr-53-espeak-cv-ft" |
|
).to(device) |
|
self.w2v_model.eval() |
|
|
|
if nemo_asr is None: |
|
self.speaker_model = None |
|
else: |
|
self.speaker_model = ( |
|
nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained( |
|
"nvidia/speakerverification_en_titanet_large" |
|
) |
|
) |
|
self.speaker_model = self.speaker_model.to(device) |
|
self.speaker_model.eval() |
|
|
|
def _build_optimizer(self): |
|
scheduler_params = { |
|
"warmup_steps": self.cfg.loss_params.warmup_steps, |
|
"base_lr": self.cfg.loss_params.base_lr, |
|
} |
|
optimizer = build_optimizer( |
|
{key: self.model[key] for key in self.model}, |
|
scheduler_params_dict={key: scheduler_params.copy() for key in self.model}, |
|
lr=float(scheduler_params["base_lr"]), |
|
) |
|
|
|
return optimizer |
|
|
|
def train_loop(self): |
|
"""Training process""" |
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
self._dump_cfg(self.config_save_path) |
|
_ = [self.model[key].train() for key in self.model] |
|
self.optimizer.zero_grad() |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
while self.epoch < self.max_epoch: |
|
self.logger.info("\n") |
|
self.logger.info("-" * 32) |
|
self.logger.info("Epoch {}: ".format(self.epoch)) |
|
|
|
|
|
train_total_loss, train_losses = self._train_epoch() |
|
for key, loss in train_losses.items(): |
|
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss)) |
|
self.accelerator.log( |
|
{"Epoch/Train {} Loss".format(key): loss}, |
|
step=self.epoch, |
|
) |
|
self.accelerator.log( |
|
{ |
|
"Epoch/Train Total Loss": train_total_loss, |
|
}, |
|
step=self.epoch, |
|
) |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
run_eval = False |
|
if self.accelerator.is_main_process: |
|
save_checkpoint = False |
|
for i, num in enumerate(self.save_checkpoint_stride): |
|
if self.epoch % num == 0: |
|
save_checkpoint = True |
|
run_eval |= self.run_eval[i] |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
if self.accelerator.is_main_process and save_checkpoint: |
|
print("Saving..") |
|
state = { |
|
"net": {key: self.model[key].state_dict() for key in self.model}, |
|
"optimizer": self.optimizer.state_dict(), |
|
"scheduler": self.optimizer.scheduler_state_dict(), |
|
"iters": self.step, |
|
"epoch": self.epoch, |
|
} |
|
save_path = os.path.join( |
|
self.checkpoint_dir, |
|
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters), |
|
) |
|
torch.save(state, save_path) |
|
json.dump( |
|
self.checkpoints_path, |
|
open(os.path.join(self.checkpoint_dir, "ckpts.json"), "w"), |
|
ensure_ascii=False, |
|
indent=4, |
|
) |
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
self.epoch += 1 |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
if self.accelerator.is_main_process: |
|
path = os.path.join( |
|
self.checkpoint_dir, |
|
"epoch-{:04d}_step-{:07d}".format( |
|
self.epoch, |
|
self.step, |
|
), |
|
) |
|
print("Saving..") |
|
state = { |
|
"net": {key: self.model[key].state_dict() for key in self.model}, |
|
"optimizer": self.optimizer.state_dict(), |
|
"scheduler": self.optimizer.scheduler_state_dict(), |
|
"iters": self.step, |
|
"epoch": self.epoch, |
|
} |
|
save_path = os.path.join( |
|
self.checkpoint_dir, |
|
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters), |
|
) |
|
torch.save(state, save_path) |
|
|
|
def _train_epoch(self): |
|
"""Training epoch. Should return average loss of a batch (sample) over |
|
one epoch. See ``train_loop`` for usage. |
|
""" |
|
_ = [self.model[key].train() for key in self.model] |
|
|
|
epoch_losses: dict = {} |
|
epoch_total_loss: int = 0 |
|
|
|
for batch in tqdm( |
|
self.train_dataloader, |
|
desc=f"Training Epoch {self.epoch}", |
|
unit="batch", |
|
colour="GREEN", |
|
leave=False, |
|
dynamic_ncols=True, |
|
smoothing=0.04, |
|
disable=not self.accelerator.is_main_process, |
|
): |
|
|
|
total_loss, losses = self._train_step(batch) |
|
self.batch_count += 1 |
|
|
|
|
|
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: |
|
self.accelerator.log( |
|
{ |
|
"Step/Learning Rate": ( |
|
self.optimizer.schedulers["encoder"].get_last_lr()[0] |
|
if self.step != 0 |
|
else 0 |
|
) |
|
}, |
|
step=self.step, |
|
) |
|
for key, _ in losses.items(): |
|
self.accelerator.log( |
|
{ |
|
"Step/Train {} Loss".format(key): losses[key], |
|
}, |
|
step=self.step, |
|
) |
|
|
|
if not epoch_losses: |
|
epoch_losses = losses |
|
else: |
|
for key, value in losses.items(): |
|
epoch_losses[key] += value |
|
epoch_total_loss += total_loss |
|
self.step += 1 |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
epoch_total_loss = ( |
|
epoch_total_loss |
|
/ len(self.train_dataloader) |
|
* self.cfg.train.gradient_accumulation_step |
|
) |
|
for key in epoch_losses.keys(): |
|
epoch_losses[key] = ( |
|
epoch_losses[key] |
|
/ len(self.train_dataloader) |
|
* self.cfg.train.gradient_accumulation_step |
|
) |
|
return epoch_total_loss, epoch_losses |
|
|
|
def _train_step(self, data): |
|
"""Training forward step. Should return average loss of a sample over |
|
one batch. Provoke ``_forward_step`` is recommended except for special case. |
|
See ``_train_epoch`` for usage. |
|
""" |
|
|
|
train_losses = {} |
|
total_loss = 0 |
|
|
|
|
|
data = [b.to(self.accelerator.device, non_blocking=True) for b in data] |
|
waves, mels, wave_lengths, mel_input_length = data |
|
|
|
|
|
waves_16k = torchaudio.functional.resample(waves, 24000, 16000) |
|
w2v_input = self.w2v_processor( |
|
waves_16k, sampling_rate=16000, return_tensors="pt" |
|
).input_values.to(self.accelerator.device) |
|
with torch.no_grad(): |
|
w2v_outputs = self.w2v_model(w2v_input.squeeze(0)).logits |
|
predicted_ids = torch.argmax(w2v_outputs, dim=-1) |
|
phone_ids = ( |
|
F.interpolate( |
|
predicted_ids.unsqueeze(0).float(), mels.size(-1), mode="nearest" |
|
) |
|
.long() |
|
.squeeze(0) |
|
) |
|
|
|
|
|
mel_seg_len = min( |
|
[int(mel_input_length.min().item()), self.cfg.train.max_frame_len] |
|
) |
|
|
|
gt_mel_seg = [] |
|
wav_seg = [] |
|
w2v_seg = [] |
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
|
|
random_start = ( |
|
np.random.randint(0, mel_length - mel_seg_len) |
|
if mel_length != mel_seg_len |
|
else 0 |
|
) |
|
gt_mel_seg.append(mels[bib, :, random_start : random_start + mel_seg_len]) |
|
|
|
|
|
w2v_seg.append(phone_ids[bib, random_start : random_start + mel_seg_len]) |
|
|
|
y = waves[bib][random_start * 300 : (random_start + mel_seg_len) * 300] |
|
|
|
wav_seg.append(y.to(self.accelerator.device)) |
|
|
|
gt_mel_seg = torch.stack(gt_mel_seg).detach() |
|
|
|
wav_seg = torch.stack(wav_seg).float().detach().unsqueeze(1) |
|
w2v_seg = torch.stack(w2v_seg).float().detach() |
|
|
|
with torch.no_grad(): |
|
real_norm = log_norm(gt_mel_seg.unsqueeze(1)).squeeze(1).detach() |
|
F0_real, _, _ = self.pitch_extractor(gt_mel_seg.unsqueeze(1)) |
|
|
|
|
|
|
|
gt_glob_f0s = [] |
|
f0_targets = [] |
|
for bib in range(len(F0_real)): |
|
voiced_indices = F0_real[bib] > 5.0 |
|
f0_voiced = F0_real[bib][voiced_indices] |
|
|
|
if len(f0_voiced) != 0: |
|
|
|
log_f0 = f0_voiced.log2() |
|
|
|
|
|
mean_f0 = log_f0.mean() |
|
std_f0 = log_f0.std() |
|
|
|
|
|
normalized_f0 = (log_f0 - mean_f0) / std_f0 |
|
|
|
|
|
normalized_sequence = torch.zeros_like(F0_real[bib]) |
|
normalized_sequence[voiced_indices] = normalized_f0 |
|
normalized_sequence[~voiced_indices] = ( |
|
-10 |
|
) |
|
|
|
gt_glob_f0s.append(mean_f0) |
|
else: |
|
normalized_sequence = torch.zeros_like(F0_real[bib]) - 10.0 |
|
gt_glob_f0s.append(torch.tensor(0.0).to(self.accelerator.device)) |
|
|
|
|
|
f0_targets.append(normalized_sequence) |
|
f0_targets = torch.stack(f0_targets).to(self.accelerator.device) |
|
|
|
f0_targets[torch.isnan(f0_targets)] = -10.0 |
|
|
|
f0_targets[torch.isinf(f0_targets)] = -10.0 |
|
|
|
if self.cfg.preprocess_params.frame_rate != 80: |
|
f0_targets = F.interpolate( |
|
f0_targets.unsqueeze(1), |
|
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate, |
|
mode="nearest", |
|
).squeeze(1) |
|
w2v_seg = F.interpolate( |
|
w2v_seg, |
|
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate, |
|
mode="nearest", |
|
) |
|
|
|
wav_seg_input = wav_seg |
|
wav_seg_target = wav_seg |
|
|
|
z = self.model.encoder(wav_seg_input) |
|
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer( |
|
z, wav_seg_input, n_c=2, full_waves=waves, wave_lens=wave_lengths |
|
) |
|
preds, rev_preds = self.model.fa_predictors(quantized, timbre) |
|
|
|
pred_wave = self.model.decoder(z) |
|
|
|
len_diff = wav_seg_target.size(-1) - pred_wave.size(-1) |
|
if len_diff > 0: |
|
wav_seg_target = wav_seg_target[..., len_diff // 2 : -len_diff // 2] |
|
|
|
|
|
d_fake = self.model.discriminator(pred_wave.detach()) |
|
d_real = self.model.discriminator(wav_seg_target) |
|
loss_d = 0 |
|
for x_fake, x_real in zip(d_fake, d_real): |
|
loss_d += torch.mean(x_fake[-1] ** 2) |
|
loss_d += torch.mean((1 - x_real[-1]) ** 2) |
|
|
|
self.optimizer.zero_grad() |
|
self.accelerator.backward(loss_d) |
|
grad_norm_d = torch.nn.utils.clip_grad_norm_( |
|
self.model.discriminator.parameters(), 10.0 |
|
) |
|
self.optimizer.step("discriminator") |
|
self.optimizer.scheduler(key="discriminator") |
|
|
|
|
|
signal = AudioSignal(wav_seg_target, sample_rate=24000) |
|
recons = AudioSignal(pred_wave, sample_rate=24000) |
|
stft_loss = self.criterions["stft"](recons, signal) |
|
mel_loss = self.criterions["mel"](recons, signal) |
|
waveform_loss = self.criterions["l1"](recons, signal) |
|
|
|
d_fake = self.model.discriminator(pred_wave) |
|
d_real = self.model.discriminator(wav_seg_target) |
|
|
|
loss_g = 0 |
|
for x_fake in d_fake: |
|
loss_g += torch.mean((1 - x_fake[-1]) ** 2) |
|
|
|
loss_feature = 0 |
|
|
|
for i in range(len(d_fake)): |
|
for j in range(len(d_fake[i]) - 1): |
|
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach()) |
|
|
|
pred_f0, pred_uv = preds["f0"], preds["uv"] |
|
rev_pred_f0, rev_pred_uv = rev_preds["rev_f0"], rev_preds["rev_uv"] |
|
|
|
common_min_size = min(pred_f0.size(-2), f0_targets.size(-1)) |
|
f0_targets = f0_targets[..., :common_min_size] |
|
real_norm = real_norm[..., :common_min_size] |
|
|
|
f0_loss = F.smooth_l1_loss( |
|
f0_targets, pred_f0.squeeze(-1)[..., :common_min_size] |
|
) |
|
uv_loss = F.smooth_l1_loss( |
|
real_norm, pred_uv.squeeze(-1)[..., :common_min_size] |
|
) |
|
rev_f0_loss = ( |
|
F.smooth_l1_loss(f0_targets, rev_pred_f0.squeeze(-1)[..., :common_min_size]) |
|
if rev_pred_f0 is not None |
|
else torch.FloatTensor([0]).to(self.accelerator.device) |
|
) |
|
rev_uv_loss = ( |
|
F.smooth_l1_loss(real_norm, rev_pred_uv.squeeze(-1)[..., :common_min_size]) |
|
if rev_pred_uv is not None |
|
else torch.FloatTensor([0]).to(self.accelerator.device) |
|
) |
|
|
|
tot_f0_loss = f0_loss + rev_f0_loss |
|
tot_uv_loss = uv_loss + rev_uv_loss |
|
|
|
pred_content = preds["content"] |
|
rev_pred_content = rev_preds["rev_content"] |
|
|
|
target_content_latents = w2v_seg[..., :common_min_size] |
|
|
|
content_loss = self.criterions["content"]( |
|
pred_content.transpose(1, 2)[..., :common_min_size], |
|
target_content_latents.long(), |
|
) |
|
rev_content_loss = ( |
|
self.criterions["content"]( |
|
rev_pred_content.transpose(1, 2)[..., :common_min_size], |
|
target_content_latents.long(), |
|
) |
|
if rev_pred_content is not None |
|
else torch.FloatTensor([0]).to(self.accelerator.device) |
|
) |
|
|
|
tot_content_loss = content_loss + rev_content_loss |
|
|
|
if self.speaker_model is not None: |
|
spk_logits = torch.cat( |
|
[ |
|
self.speaker_model.infer_segment(w16.cpu()[..., :wl])[1] |
|
for w16, wl in zip(waves_16k, wave_lengths) |
|
], |
|
dim=0, |
|
) |
|
spk_labels = spk_logits.argmax(dim=-1) |
|
else: |
|
spk_labels = torch.zeros([len(waves_16k)], dtype=torch.long).to( |
|
self.accelerator.device |
|
) |
|
|
|
spk_pred_logits = preds["timbre"] |
|
spk_loss = F.cross_entropy(spk_pred_logits, spk_labels) |
|
x_spk_pred_logits = rev_preds["x_timbre"] |
|
|
|
x_spk_loss = ( |
|
F.cross_entropy(x_spk_pred_logits, spk_labels) |
|
if x_spk_pred_logits is not None |
|
else torch.FloatTensor([0]).to(self.accelerator.device) |
|
) |
|
|
|
tot_spk_loss = spk_loss + x_spk_loss |
|
|
|
loss_gen_all = ( |
|
mel_loss * 15.0 |
|
+ loss_feature * 1.0 |
|
+ loss_g * 1.0 |
|
+ commitment_loss * 0.25 |
|
+ codebook_loss * 1.0 |
|
+ tot_f0_loss * 1.0 |
|
+ tot_uv_loss * 1.0 |
|
+ tot_content_loss * 5.0 |
|
+ tot_spk_loss * 5.0 |
|
) |
|
|
|
self.optimizer.zero_grad() |
|
self.accelerator.backward(loss_gen_all) |
|
|
|
with torch.no_grad(): |
|
total_loss = loss_gen_all.item() |
|
train_losses["stft"] = stft_loss.item() |
|
train_losses["mel"] = mel_loss.item() |
|
train_losses["l1"] = waveform_loss.item() |
|
train_losses["f0"] = f0_loss.item() |
|
train_losses["uv"] = uv_loss.item() |
|
train_losses["content"] = content_loss.item() |
|
train_losses["speaker"] = spk_loss.item() |
|
train_losses["rev_f0"] = rev_f0_loss.item() |
|
train_losses["rev_uv"] = rev_uv_loss.item() |
|
train_losses["rev_content"] = rev_content_loss.item() |
|
train_losses["rev_speaker"] = x_spk_loss.item() |
|
|
|
train_losses["feature"] = loss_feature.item() |
|
train_losses["generator"] = loss_g.item() |
|
train_losses["commitment"] = commitment_loss.item() |
|
train_losses["codebook"] = codebook_loss.item() |
|
|
|
|
|
train_losses["discriminator"] = loss_d.item() |
|
|
|
return total_loss, train_losses |
|
|
|
def _inference(self, eval_wave): |
|
"""Inference during training for test audios.""" |
|
z = self.model.encoder( |
|
eval_wave[None, None, ...].to(self.accelerator.device).float() |
|
) |
|
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer( |
|
z, eval_wave[None, None, ...], n_c=self.cfg.model_params.n_c_codebooks |
|
) |
|
full_pred_wave = self.model.decoder(z) |
|
return full_pred_wave[0] |
|
|
|
def _load_model(self, checkpoint_path=None, resume_type="resume"): |
|
"""Load model from checkpoint. If checkpoint_path is None, it will |
|
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not |
|
None, it will load the checkpoint specified by checkpoint_path. **Only use this |
|
method after** ``accelerator.prepare()``. |
|
""" |
|
if resume_type == "resume": |
|
if checkpoint_path is None: |
|
available_checkpoints = glob.glob( |
|
os.path.join(self.checkpoint_dir, "FAcodc_epoch_*_step_*.pth") |
|
) |
|
|
|
latest_checkpoint = max( |
|
available_checkpoints, |
|
key=lambda x: int(x.split("_")[-1].split(".")[0]), |
|
) |
|
earliest_checkpoint = min( |
|
available_checkpoints, |
|
key=lambda x: int(x.split("_")[-1].split(".")[0]), |
|
) |
|
|
|
if ( |
|
earliest_checkpoint != latest_checkpoint |
|
and self.accelerator.is_main_process |
|
and len(available_checkpoints) > 4 |
|
): |
|
os.remove(earliest_checkpoint) |
|
print(f"Removed {earliest_checkpoint}") |
|
else: |
|
latest_checkpoint = checkpoint_path |
|
|
|
self.model, self.optimizer, self.epoch, self.step = load_checkpoint( |
|
self.model, |
|
self.optimizer, |
|
latest_checkpoint, |
|
load_only_params=False, |
|
ignore_modules=[], |
|
is_distributed=self.accelerator.num_processes > 1, |
|
) |
|
|
|
else: |
|
raise ValueError("Invalid resume type") |
|
return checkpoint_path |
|
|
|
def _count_parameters(self): |
|
total_num = sum( |
|
sum(p.numel() for p in self.model[key].parameters()) for key in self.model |
|
) |
|
|
|
return total_num |
|
|