|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Encodec SEANet-based encoder and decoder implementation.""" |
|
|
|
import typing as tp |
|
|
|
import numpy as np |
|
import torch.nn as nn |
|
import torch |
|
|
|
from . import SConv1d, SConvTranspose1d, SLSTM |
|
|
|
|
|
@torch.jit.script |
|
def snake(x, alpha): |
|
shape = x.shape |
|
x = x.reshape(shape[0], shape[1], -1) |
|
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2) |
|
x = x.reshape(shape) |
|
return x |
|
|
|
|
|
class Snake1d(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.alpha = nn.Parameter(torch.ones(1, channels, 1)) |
|
|
|
def forward(self, x): |
|
return snake(x, self.alpha) |
|
|
|
|
|
class SEANetResnetBlock(nn.Module): |
|
"""Residual block from SEANet model. |
|
Args: |
|
dim (int): Dimension of the input/output |
|
kernel_sizes (list): List of kernel sizes for the convolutions. |
|
dilations (list): List of dilations for the convolutions. |
|
activation (str): Activation function. |
|
activation_params (dict): Parameters to provide to the activation function |
|
norm (str): Normalization method. |
|
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. |
|
causal (bool): Whether to use fully causal convolution. |
|
pad_mode (str): Padding mode for the convolutions. |
|
compress (int): Reduced dimensionality in residual branches (from Demucs v3) |
|
true_skip (bool): Whether to use true skip connection or a simple convolution as the skip connection. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
kernel_sizes: tp.List[int] = [3, 1], |
|
dilations: tp.List[int] = [1, 1], |
|
activation: str = "ELU", |
|
activation_params: dict = {"alpha": 1.0}, |
|
norm: str = "weight_norm", |
|
norm_params: tp.Dict[str, tp.Any] = {}, |
|
causal: bool = False, |
|
pad_mode: str = "reflect", |
|
compress: int = 2, |
|
true_skip: bool = True, |
|
): |
|
super().__init__() |
|
assert len(kernel_sizes) == len( |
|
dilations |
|
), "Number of kernel sizes should match number of dilations" |
|
act = getattr(nn, activation) if activation != "Snake" else Snake1d |
|
hidden = dim // compress |
|
block = [] |
|
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): |
|
in_chs = dim if i == 0 else hidden |
|
out_chs = dim if i == len(kernel_sizes) - 1 else hidden |
|
block += [ |
|
act(**activation_params) if activation != "Snake" else act(in_chs), |
|
SConv1d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=kernel_size, |
|
dilation=dilation, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
), |
|
] |
|
self.block = nn.Sequential(*block) |
|
self.shortcut: nn.Module |
|
if true_skip: |
|
self.shortcut = nn.Identity() |
|
else: |
|
self.shortcut = SConv1d( |
|
dim, |
|
dim, |
|
kernel_size=1, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
) |
|
|
|
def forward(self, x): |
|
return self.shortcut(x) + self.block(x) |
|
|
|
|
|
class SEANetEncoder(nn.Module): |
|
"""SEANet encoder. |
|
Args: |
|
channels (int): Audio channels. |
|
dimension (int): Intermediate representation dimension. |
|
n_filters (int): Base width for the model. |
|
n_residual_layers (int): nb of residual layers. |
|
ratios (Sequence[int]): kernel size and stride ratios. The encoder uses downsampling ratios instead of |
|
upsampling ratios, hence it will use the ratios in the reverse order to the ones specified here |
|
that must match the decoder order |
|
activation (str): Activation function. |
|
activation_params (dict): Parameters to provide to the activation function |
|
norm (str): Normalization method. |
|
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. |
|
kernel_size (int): Kernel size for the initial convolution. |
|
last_kernel_size (int): Kernel size for the initial convolution. |
|
residual_kernel_size (int): Kernel size for the residual layers. |
|
dilation_base (int): How much to increase the dilation with each layer. |
|
causal (bool): Whether to use fully causal convolution. |
|
pad_mode (str): Padding mode for the convolutions. |
|
true_skip (bool): Whether to use true skip connection or a simple |
|
(streamable) convolution as the skip connection in the residual network blocks. |
|
compress (int): Reduced dimensionality in residual branches (from Demucs v3). |
|
lstm (int): Number of LSTM layers at the end of the encoder. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int = 1, |
|
dimension: int = 128, |
|
n_filters: int = 32, |
|
n_residual_layers: int = 1, |
|
ratios: tp.List[int] = [8, 5, 4, 2], |
|
activation: str = "ELU", |
|
activation_params: dict = {"alpha": 1.0}, |
|
norm: str = "weight_norm", |
|
norm_params: tp.Dict[str, tp.Any] = {}, |
|
kernel_size: int = 7, |
|
last_kernel_size: int = 7, |
|
residual_kernel_size: int = 3, |
|
dilation_base: int = 2, |
|
causal: bool = False, |
|
pad_mode: str = "reflect", |
|
true_skip: bool = False, |
|
compress: int = 2, |
|
lstm: int = 2, |
|
bidirectional: bool = False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.dimension = dimension |
|
self.n_filters = n_filters |
|
self.ratios = list(reversed(ratios)) |
|
del ratios |
|
self.n_residual_layers = n_residual_layers |
|
self.hop_length = np.prod(self.ratios) |
|
|
|
act = getattr(nn, activation) if activation != "Snake" else Snake1d |
|
mult = 1 |
|
model: tp.List[nn.Module] = [ |
|
SConv1d( |
|
channels, |
|
mult * n_filters, |
|
kernel_size, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
) |
|
] |
|
|
|
for i, ratio in enumerate(self.ratios): |
|
|
|
for j in range(n_residual_layers): |
|
model += [ |
|
SEANetResnetBlock( |
|
mult * n_filters, |
|
kernel_sizes=[residual_kernel_size, 1], |
|
dilations=[dilation_base**j, 1], |
|
norm=norm, |
|
norm_params=norm_params, |
|
activation=activation, |
|
activation_params=activation_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
compress=compress, |
|
true_skip=true_skip, |
|
) |
|
] |
|
|
|
|
|
model += [ |
|
( |
|
act(**activation_params) |
|
if activation != "Snake" |
|
else act(mult * n_filters) |
|
), |
|
SConv1d( |
|
mult * n_filters, |
|
mult * n_filters * 2, |
|
kernel_size=ratio * 2, |
|
stride=ratio, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
), |
|
] |
|
mult *= 2 |
|
|
|
if lstm: |
|
model += [ |
|
SLSTM(mult * n_filters, num_layers=lstm, bidirectional=bidirectional) |
|
] |
|
|
|
mult = mult * 2 if bidirectional else mult |
|
model += [ |
|
( |
|
act(**activation_params) |
|
if activation != "Snake" |
|
else act(mult * n_filters) |
|
), |
|
SConv1d( |
|
mult * n_filters, |
|
dimension, |
|
last_kernel_size, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
), |
|
] |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
class SEANetDecoder(nn.Module): |
|
"""SEANet decoder. |
|
Args: |
|
channels (int): Audio channels. |
|
dimension (int): Intermediate representation dimension. |
|
n_filters (int): Base width for the model. |
|
n_residual_layers (int): nb of residual layers. |
|
ratios (Sequence[int]): kernel size and stride ratios |
|
activation (str): Activation function. |
|
activation_params (dict): Parameters to provide to the activation function |
|
final_activation (str): Final activation function after all convolutions. |
|
final_activation_params (dict): Parameters to provide to the activation function |
|
norm (str): Normalization method. |
|
norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. |
|
kernel_size (int): Kernel size for the initial convolution. |
|
last_kernel_size (int): Kernel size for the initial convolution. |
|
residual_kernel_size (int): Kernel size for the residual layers. |
|
dilation_base (int): How much to increase the dilation with each layer. |
|
causal (bool): Whether to use fully causal convolution. |
|
pad_mode (str): Padding mode for the convolutions. |
|
true_skip (bool): Whether to use true skip connection or a simple |
|
(streamable) convolution as the skip connection in the residual network blocks. |
|
compress (int): Reduced dimensionality in residual branches (from Demucs v3). |
|
lstm (int): Number of LSTM layers at the end of the encoder. |
|
trim_right_ratio (float): Ratio for trimming at the right of the transposed convolution under the causal setup. |
|
If equal to 1.0, it means that all the trimming is done at the right. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int = 1, |
|
dimension: int = 128, |
|
n_filters: int = 32, |
|
n_residual_layers: int = 1, |
|
ratios: tp.List[int] = [8, 5, 4, 2], |
|
activation: str = "ELU", |
|
activation_params: dict = {"alpha": 1.0}, |
|
final_activation: tp.Optional[str] = None, |
|
final_activation_params: tp.Optional[dict] = None, |
|
norm: str = "weight_norm", |
|
norm_params: tp.Dict[str, tp.Any] = {}, |
|
kernel_size: int = 7, |
|
last_kernel_size: int = 7, |
|
residual_kernel_size: int = 3, |
|
dilation_base: int = 2, |
|
causal: bool = False, |
|
pad_mode: str = "reflect", |
|
true_skip: bool = False, |
|
compress: int = 2, |
|
lstm: int = 2, |
|
trim_right_ratio: float = 1.0, |
|
bidirectional: bool = False, |
|
): |
|
super().__init__() |
|
self.dimension = dimension |
|
self.channels = channels |
|
self.n_filters = n_filters |
|
self.ratios = ratios |
|
del ratios |
|
self.n_residual_layers = n_residual_layers |
|
self.hop_length = np.prod(self.ratios) |
|
|
|
act = getattr(nn, activation) if activation != "Snake" else Snake1d |
|
mult = int(2 ** len(self.ratios)) |
|
model: tp.List[nn.Module] = [ |
|
SConv1d( |
|
dimension, |
|
mult * n_filters, |
|
kernel_size, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
) |
|
] |
|
|
|
if lstm: |
|
model += [ |
|
SLSTM(mult * n_filters, num_layers=lstm, bidirectional=bidirectional) |
|
] |
|
|
|
|
|
for i, ratio in enumerate(self.ratios): |
|
|
|
model += [ |
|
( |
|
act(**activation_params) |
|
if activation != "Snake" |
|
else act(mult * n_filters) |
|
), |
|
SConvTranspose1d( |
|
mult * n_filters, |
|
mult * n_filters // 2, |
|
kernel_size=ratio * 2, |
|
stride=ratio, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
trim_right_ratio=trim_right_ratio, |
|
), |
|
] |
|
|
|
for j in range(n_residual_layers): |
|
model += [ |
|
SEANetResnetBlock( |
|
mult * n_filters // 2, |
|
kernel_sizes=[residual_kernel_size, 1], |
|
dilations=[dilation_base**j, 1], |
|
activation=activation, |
|
activation_params=activation_params, |
|
norm=norm, |
|
norm_params=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
compress=compress, |
|
true_skip=true_skip, |
|
) |
|
] |
|
|
|
mult //= 2 |
|
|
|
|
|
model += [ |
|
act(**activation_params) if activation != "Snake" else act(n_filters), |
|
SConv1d( |
|
n_filters, |
|
channels, |
|
last_kernel_size, |
|
norm=norm, |
|
norm_kwargs=norm_params, |
|
causal=causal, |
|
pad_mode=pad_mode, |
|
), |
|
] |
|
|
|
if final_activation is not None: |
|
final_act = getattr(nn, final_activation) |
|
final_activation_params = final_activation_params or {} |
|
model += [final_act(**final_activation_params)] |
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, z): |
|
y = self.model(z) |
|
return y |
|
|
|
|
|
def test(): |
|
import torch |
|
|
|
encoder = SEANetEncoder() |
|
decoder = SEANetDecoder() |
|
x = torch.randn(1, 1, 24000) |
|
z = encoder(x) |
|
print("z ", z.shape) |
|
assert 1 == 2 |
|
assert list(z.shape) == [1, 128, 75], z.shape |
|
y = decoder(z) |
|
assert y.shape == x.shape, (x.shape, y.shape) |
|
|
|
|
|
if __name__ == "__main__": |
|
test() |
|
|