|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Encoder definition.""" |
|
from typing import Tuple |
|
|
|
import torch |
|
|
|
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention |
|
from modules.wenet_extractor.transformer.attention import ( |
|
RelPositionMultiHeadedAttention, |
|
) |
|
from modules.wenet_extractor.transformer.convolution import ConvolutionModule |
|
from modules.wenet_extractor.transformer.embedding import PositionalEncoding |
|
from modules.wenet_extractor.transformer.embedding import RelPositionalEncoding |
|
from modules.wenet_extractor.transformer.embedding import NoPositionalEncoding |
|
from modules.wenet_extractor.transformer.encoder_layer import TransformerEncoderLayer |
|
from modules.wenet_extractor.transformer.encoder_layer import ConformerEncoderLayer |
|
from modules.wenet_extractor.transformer.positionwise_feed_forward import ( |
|
PositionwiseFeedForward, |
|
) |
|
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling4 |
|
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling6 |
|
from modules.wenet_extractor.transformer.subsampling import Conv2dSubsampling8 |
|
from modules.wenet_extractor.transformer.subsampling import LinearNoSubsampling |
|
from modules.wenet_extractor.utils.common import get_activation |
|
from modules.wenet_extractor.utils.mask import make_pad_mask |
|
from modules.wenet_extractor.utils.mask import add_optional_chunk_mask |
|
|
|
|
|
class BaseEncoder(torch.nn.Module): |
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: str = "conv2d", |
|
pos_enc_layer_type: str = "abs_pos", |
|
normalize_before: bool = True, |
|
static_chunk_size: int = 0, |
|
use_dynamic_chunk: bool = False, |
|
global_cmvn: torch.nn.Module = None, |
|
use_dynamic_left_chunk: bool = False, |
|
): |
|
""" |
|
Args: |
|
input_size (int): input dim |
|
output_size (int): dimension of attention |
|
attention_heads (int): the number of heads of multi head attention |
|
linear_units (int): the hidden units number of position-wise feed |
|
forward |
|
num_blocks (int): the number of decoder blocks |
|
dropout_rate (float): dropout rate |
|
attention_dropout_rate (float): dropout rate in attention |
|
positional_dropout_rate (float): dropout rate after adding |
|
positional encoding |
|
input_layer (str): input layer type. |
|
optional [linear, conv2d, conv2d6, conv2d8] |
|
pos_enc_layer_type (str): Encoder positional encoding layer type. |
|
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] |
|
normalize_before (bool): |
|
True: use layer_norm before each sub-block of a layer. |
|
False: use layer_norm after each sub-block of a layer. |
|
static_chunk_size (int): chunk size for static chunk training and |
|
decoding |
|
use_dynamic_chunk (bool): whether use dynamic chunk size for |
|
training or not, You can only use fixed chunk(chunk_size > 0) |
|
or dyanmic chunk size(use_dynamic_chunk = True) |
|
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module |
|
use_dynamic_left_chunk (bool): whether use dynamic left chunk in |
|
dynamic chunk training |
|
""" |
|
super().__init__() |
|
self._output_size = output_size |
|
|
|
if pos_enc_layer_type == "abs_pos": |
|
pos_enc_class = PositionalEncoding |
|
elif pos_enc_layer_type == "rel_pos": |
|
pos_enc_class = RelPositionalEncoding |
|
elif pos_enc_layer_type == "no_pos": |
|
pos_enc_class = NoPositionalEncoding |
|
else: |
|
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) |
|
|
|
if input_layer == "linear": |
|
subsampling_class = LinearNoSubsampling |
|
elif input_layer == "conv2d": |
|
subsampling_class = Conv2dSubsampling4 |
|
elif input_layer == "conv2d6": |
|
subsampling_class = Conv2dSubsampling6 |
|
elif input_layer == "conv2d8": |
|
subsampling_class = Conv2dSubsampling8 |
|
else: |
|
raise ValueError("unknown input_layer: " + input_layer) |
|
|
|
self.global_cmvn = global_cmvn |
|
self.embed = subsampling_class( |
|
input_size, |
|
output_size, |
|
dropout_rate, |
|
pos_enc_class(output_size, positional_dropout_rate), |
|
) |
|
|
|
self.normalize_before = normalize_before |
|
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) |
|
self.static_chunk_size = static_chunk_size |
|
self.use_dynamic_chunk = use_dynamic_chunk |
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk |
|
|
|
def output_size(self) -> int: |
|
return self._output_size |
|
|
|
def forward( |
|
self, |
|
xs: torch.Tensor, |
|
xs_lens: torch.Tensor, |
|
decoding_chunk_size: int = 0, |
|
num_decoding_left_chunks: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Embed positions in tensor. |
|
|
|
Args: |
|
xs: padded input tensor (B, T, D) |
|
xs_lens: input length (B) |
|
decoding_chunk_size: decoding chunk size for dynamic chunk |
|
0: default for training, use random dynamic chunk. |
|
<0: for decoding, use full chunk. |
|
>0: for decoding, use fixed chunk size as set. |
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
the chunk size is decoding_chunk_size. |
|
>=0: use num_decoding_left_chunks |
|
<0: use all left chunks |
|
Returns: |
|
encoder output tensor xs, and subsampled masks |
|
xs: padded output tensor (B, T' ~= T/subsample_rate, D) |
|
masks: torch.Tensor batch padding mask after subsample |
|
(B, 1, T' ~= T/subsample_rate) |
|
""" |
|
T = xs.size(1) |
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) |
|
if self.global_cmvn is not None: |
|
xs = self.global_cmvn(xs) |
|
xs, pos_emb, masks = self.embed(xs, masks) |
|
mask_pad = masks |
|
chunk_masks = add_optional_chunk_mask( |
|
xs, |
|
masks, |
|
self.use_dynamic_chunk, |
|
self.use_dynamic_left_chunk, |
|
decoding_chunk_size, |
|
self.static_chunk_size, |
|
num_decoding_left_chunks, |
|
) |
|
for layer in self.encoders: |
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) |
|
if self.normalize_before: |
|
xs = self.after_norm(xs) |
|
|
|
|
|
|
|
return xs, masks |
|
|
|
def forward_chunk( |
|
self, |
|
xs: torch.Tensor, |
|
offset: int, |
|
required_cache_size: int, |
|
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), |
|
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0), |
|
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" Forward just one chunk |
|
|
|
Args: |
|
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim), |
|
where `time == (chunk_size - 1) * subsample_rate + \ |
|
subsample.right_context + 1` |
|
offset (int): current offset in encoder output time stamp |
|
required_cache_size (int): cache size required for next chunk |
|
compuation |
|
>=0: actual cache size |
|
<0: means all history cache is required |
|
att_cache (torch.Tensor): cache tensor for KEY & VALUE in |
|
transformer/conformer attention, with shape |
|
(elayers, head, cache_t1, d_k * 2), where |
|
`head * d_k == hidden-dim` and |
|
`cache_t1 == chunk_size * num_decoding_left_chunks`. |
|
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, |
|
(elayers, b=1, hidden-dim, cache_t2), where |
|
`cache_t2 == cnn.lorder - 1` |
|
|
|
Returns: |
|
torch.Tensor: output of current input xs, |
|
with shape (b=1, chunk_size, hidden-dim). |
|
torch.Tensor: new attention cache required for next chunk, with |
|
dynamic shape (elayers, head, ?, d_k * 2) |
|
depending on required_cache_size. |
|
torch.Tensor: new conformer cnn cache required for next chunk, with |
|
same shape as the original cnn_cache. |
|
|
|
""" |
|
assert xs.size(0) == 1 |
|
|
|
tmp_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool) |
|
tmp_masks = tmp_masks.unsqueeze(1) |
|
if self.global_cmvn is not None: |
|
xs = self.global_cmvn(xs) |
|
|
|
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset) |
|
|
|
elayers, cache_t1 = att_cache.size(0), att_cache.size(2) |
|
chunk_size = xs.size(1) |
|
attention_key_size = cache_t1 + chunk_size |
|
pos_emb = self.embed.position_encoding( |
|
offset=offset - cache_t1, size=attention_key_size |
|
) |
|
if required_cache_size < 0: |
|
next_cache_start = 0 |
|
elif required_cache_size == 0: |
|
next_cache_start = attention_key_size |
|
else: |
|
next_cache_start = max(attention_key_size - required_cache_size, 0) |
|
r_att_cache = [] |
|
r_cnn_cache = [] |
|
for i, layer in enumerate(self.encoders): |
|
|
|
|
|
|
|
xs, _, new_att_cache, new_cnn_cache = layer( |
|
xs, |
|
att_mask, |
|
pos_emb, |
|
att_cache=att_cache[i : i + 1] if elayers > 0 else att_cache, |
|
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache, |
|
) |
|
|
|
|
|
|
|
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :]) |
|
r_cnn_cache.append(new_cnn_cache.unsqueeze(0)) |
|
if self.normalize_before: |
|
xs = self.after_norm(xs) |
|
|
|
|
|
|
|
r_att_cache = torch.cat(r_att_cache, dim=0) |
|
|
|
r_cnn_cache = torch.cat(r_cnn_cache, dim=0) |
|
|
|
return (xs, r_att_cache, r_cnn_cache) |
|
|
|
def forward_chunk_by_chunk( |
|
self, |
|
xs: torch.Tensor, |
|
decoding_chunk_size: int, |
|
num_decoding_left_chunks: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Forward input chunk by chunk with chunk_size like a streaming |
|
fashion |
|
|
|
Here we should pay special attention to computation cache in the |
|
streaming style forward chunk by chunk. Three things should be taken |
|
into account for computation in the current network: |
|
1. transformer/conformer encoder layers output cache |
|
2. convolution in conformer |
|
3. convolution in subsampling |
|
|
|
However, we don't implement subsampling cache for: |
|
1. We can control subsampling module to output the right result by |
|
overlapping input instead of cache left context, even though it |
|
wastes some computation, but subsampling only takes a very |
|
small fraction of computation in the whole model. |
|
2. Typically, there are several covolution layers with subsampling |
|
in subsampling module, it is tricky and complicated to do cache |
|
with different convolution layers with different subsampling |
|
rate. |
|
3. Currently, nn.Sequential is used to stack all the convolution |
|
layers in subsampling, we need to rewrite it to make it work |
|
with cache, which is not prefered. |
|
Args: |
|
xs (torch.Tensor): (1, max_len, dim) |
|
chunk_size (int): decoding chunk size |
|
""" |
|
assert decoding_chunk_size > 0 |
|
|
|
assert self.static_chunk_size > 0 or self.use_dynamic_chunk |
|
subsampling = self.embed.subsampling_rate |
|
context = self.embed.right_context + 1 |
|
stride = subsampling * decoding_chunk_size |
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context |
|
num_frames = xs.size(1) |
|
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) |
|
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device) |
|
outputs = [] |
|
offset = 0 |
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks |
|
|
|
|
|
for cur in range(0, num_frames - context + 1, stride): |
|
end = min(cur + decoding_window, num_frames) |
|
chunk_xs = xs[:, cur:end, :] |
|
(y, att_cache, cnn_cache) = self.forward_chunk( |
|
chunk_xs, offset, required_cache_size, att_cache, cnn_cache |
|
) |
|
outputs.append(y) |
|
offset += y.size(1) |
|
ys = torch.cat(outputs, 1) |
|
masks = torch.ones((1, 1, ys.size(1)), device=ys.device, dtype=torch.bool) |
|
return ys, masks |
|
|
|
|
|
class TransformerEncoder(BaseEncoder): |
|
"""Transformer encoder module.""" |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: str = "conv2d", |
|
pos_enc_layer_type: str = "abs_pos", |
|
normalize_before: bool = True, |
|
static_chunk_size: int = 0, |
|
use_dynamic_chunk: bool = False, |
|
global_cmvn: torch.nn.Module = None, |
|
use_dynamic_left_chunk: bool = False, |
|
): |
|
"""Construct TransformerEncoder |
|
|
|
See Encoder for the meaning of each parameter. |
|
""" |
|
super().__init__( |
|
input_size, |
|
output_size, |
|
attention_heads, |
|
linear_units, |
|
num_blocks, |
|
dropout_rate, |
|
positional_dropout_rate, |
|
attention_dropout_rate, |
|
input_layer, |
|
pos_enc_layer_type, |
|
normalize_before, |
|
static_chunk_size, |
|
use_dynamic_chunk, |
|
global_cmvn, |
|
use_dynamic_left_chunk, |
|
) |
|
self.encoders = torch.nn.ModuleList( |
|
[ |
|
TransformerEncoderLayer( |
|
output_size, |
|
MultiHeadedAttention( |
|
attention_heads, output_size, attention_dropout_rate |
|
), |
|
PositionwiseFeedForward(output_size, linear_units, dropout_rate), |
|
dropout_rate, |
|
normalize_before, |
|
) |
|
for _ in range(num_blocks) |
|
] |
|
) |
|
|
|
|
|
class ConformerEncoder(BaseEncoder): |
|
"""Conformer encoder module.""" |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: str = "conv2d", |
|
pos_enc_layer_type: str = "rel_pos", |
|
normalize_before: bool = True, |
|
static_chunk_size: int = 0, |
|
use_dynamic_chunk: bool = False, |
|
global_cmvn: torch.nn.Module = None, |
|
use_dynamic_left_chunk: bool = False, |
|
positionwise_conv_kernel_size: int = 1, |
|
macaron_style: bool = True, |
|
selfattention_layer_type: str = "rel_selfattn", |
|
activation_type: str = "swish", |
|
use_cnn_module: bool = True, |
|
cnn_module_kernel: int = 15, |
|
causal: bool = False, |
|
cnn_module_norm: str = "batch_norm", |
|
): |
|
"""Construct ConformerEncoder |
|
|
|
Args: |
|
input_size to use_dynamic_chunk, see in BaseEncoder |
|
positionwise_conv_kernel_size (int): Kernel size of positionwise |
|
conv1d layer. |
|
macaron_style (bool): Whether to use macaron style for |
|
positionwise layer. |
|
selfattention_layer_type (str): Encoder attention layer type, |
|
the parameter has no effect now, it's just for configure |
|
compatibility. |
|
activation_type (str): Encoder activation function type. |
|
use_cnn_module (bool): Whether to use convolution module. |
|
cnn_module_kernel (int): Kernel size of convolution module. |
|
causal (bool): whether to use causal convolution or not. |
|
""" |
|
super().__init__( |
|
input_size, |
|
output_size, |
|
attention_heads, |
|
linear_units, |
|
num_blocks, |
|
dropout_rate, |
|
positional_dropout_rate, |
|
attention_dropout_rate, |
|
input_layer, |
|
pos_enc_layer_type, |
|
normalize_before, |
|
static_chunk_size, |
|
use_dynamic_chunk, |
|
global_cmvn, |
|
use_dynamic_left_chunk, |
|
) |
|
activation = get_activation(activation_type) |
|
|
|
|
|
if pos_enc_layer_type != "rel_pos": |
|
encoder_selfattn_layer = MultiHeadedAttention |
|
else: |
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention |
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
output_size, |
|
attention_dropout_rate, |
|
) |
|
|
|
positionwise_layer = PositionwiseFeedForward |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
dropout_rate, |
|
activation, |
|
) |
|
|
|
convolution_layer = ConvolutionModule |
|
convolution_layer_args = ( |
|
output_size, |
|
cnn_module_kernel, |
|
activation, |
|
cnn_module_norm, |
|
causal, |
|
) |
|
|
|
self.encoders = torch.nn.ModuleList( |
|
[ |
|
ConformerEncoderLayer( |
|
output_size, |
|
encoder_selfattn_layer(*encoder_selfattn_layer_args), |
|
positionwise_layer(*positionwise_layer_args), |
|
( |
|
positionwise_layer(*positionwise_layer_args) |
|
if macaron_style |
|
else None |
|
), |
|
( |
|
convolution_layer(*convolution_layer_args) |
|
if use_cnn_module |
|
else None |
|
), |
|
dropout_rate, |
|
normalize_before, |
|
) |
|
for _ in range(num_blocks) |
|
] |
|
) |
|
|