|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import typing |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from audiotools import AudioSignal |
|
from audiotools import STFTParams |
|
from torch import nn |
|
|
|
|
|
class L1Loss(nn.L1Loss): |
|
"""L1 Loss between AudioSignals. Defaults |
|
to comparing ``audio_data``, but any |
|
attribute of an AudioSignal can be used. |
|
|
|
Parameters |
|
---------- |
|
attribute : str, optional |
|
Attribute of signal to compare, defaults to ``audio_data``. |
|
weight : float, optional |
|
Weight of this loss, defaults to 1.0. |
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py |
|
""" |
|
|
|
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs): |
|
self.attribute = attribute |
|
self.weight = weight |
|
super().__init__(**kwargs) |
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal): |
|
""" |
|
Parameters |
|
---------- |
|
x : AudioSignal |
|
Estimate AudioSignal |
|
y : AudioSignal |
|
Reference AudioSignal |
|
|
|
Returns |
|
------- |
|
torch.Tensor |
|
L1 loss between AudioSignal attributes. |
|
""" |
|
if isinstance(x, AudioSignal): |
|
x = getattr(x, self.attribute) |
|
y = getattr(y, self.attribute) |
|
return super().forward(x, y) |
|
|
|
|
|
class SISDRLoss(nn.Module): |
|
""" |
|
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch |
|
of estimated and reference audio signals or aligned features. |
|
|
|
Parameters |
|
---------- |
|
scaling : int, optional |
|
Whether to use scale-invariant (True) or |
|
signal-to-noise ratio (False), by default True |
|
reduction : str, optional |
|
How to reduce across the batch (either 'mean', |
|
'sum', or none).], by default ' mean' |
|
zero_mean : int, optional |
|
Zero mean the references and estimates before |
|
computing the loss, by default True |
|
clip_min : int, optional |
|
The minimum possible loss value. Helps network |
|
to not focus on making already good examples better, by default None |
|
weight : float, optional |
|
Weight of this loss, defaults to 1.0. |
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
scaling: int = True, |
|
reduction: str = "mean", |
|
zero_mean: int = True, |
|
clip_min: int = None, |
|
weight: float = 1.0, |
|
): |
|
self.scaling = scaling |
|
self.reduction = reduction |
|
self.zero_mean = zero_mean |
|
self.clip_min = clip_min |
|
self.weight = weight |
|
super().__init__() |
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal): |
|
eps = 1e-8 |
|
|
|
if isinstance(x, AudioSignal): |
|
references = x.audio_data |
|
estimates = y.audio_data |
|
else: |
|
references = x |
|
estimates = y |
|
|
|
nb = references.shape[0] |
|
references = references.reshape(nb, 1, -1).permute(0, 2, 1) |
|
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1) |
|
|
|
|
|
if self.zero_mean: |
|
mean_reference = references.mean(dim=1, keepdim=True) |
|
mean_estimate = estimates.mean(dim=1, keepdim=True) |
|
else: |
|
mean_reference = 0 |
|
mean_estimate = 0 |
|
|
|
_references = references - mean_reference |
|
_estimates = estimates - mean_estimate |
|
|
|
references_projection = (_references**2).sum(dim=-2) + eps |
|
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps |
|
|
|
scale = ( |
|
(references_on_estimates / references_projection).unsqueeze(1) |
|
if self.scaling |
|
else 1 |
|
) |
|
|
|
e_true = scale * _references |
|
e_res = _estimates - e_true |
|
|
|
signal = (e_true**2).sum(dim=1) |
|
noise = (e_res**2).sum(dim=1) |
|
sdr = -10 * torch.log10(signal / noise + eps) |
|
|
|
if self.clip_min is not None: |
|
sdr = torch.clamp(sdr, min=self.clip_min) |
|
|
|
if self.reduction == "mean": |
|
sdr = sdr.mean() |
|
elif self.reduction == "sum": |
|
sdr = sdr.sum() |
|
return sdr |
|
|
|
|
|
class MultiScaleSTFTLoss(nn.Module): |
|
"""Computes the multi-scale STFT loss from [1]. |
|
|
|
Parameters |
|
---------- |
|
window_lengths : List[int], optional |
|
Length of each window of each STFT, by default [2048, 512] |
|
loss_fn : typing.Callable, optional |
|
How to compare each loss, by default nn.L1Loss() |
|
clamp_eps : float, optional |
|
Clamp on the log magnitude, below, by default 1e-5 |
|
mag_weight : float, optional |
|
Weight of raw magnitude portion of loss, by default 1.0 |
|
log_weight : float, optional |
|
Weight of log magnitude portion of loss, by default 1.0 |
|
pow : float, optional |
|
Power to raise magnitude to before taking log, by default 2.0 |
|
weight : float, optional |
|
Weight of this loss, by default 1.0 |
|
match_stride : bool, optional |
|
Whether to match the stride of convolutional layers, by default False |
|
|
|
References |
|
---------- |
|
|
|
1. Engel, Jesse, Chenjie Gu, and Adam Roberts. |
|
"DDSP: Differentiable Digital Signal Processing." |
|
International Conference on Learning Representations. 2019. |
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
window_lengths: List[int] = [2048, 512], |
|
loss_fn: typing.Callable = nn.L1Loss(), |
|
clamp_eps: float = 1e-5, |
|
mag_weight: float = 1.0, |
|
log_weight: float = 1.0, |
|
pow: float = 2.0, |
|
weight: float = 1.0, |
|
match_stride: bool = False, |
|
window_type: str = None, |
|
): |
|
super().__init__() |
|
self.stft_params = [ |
|
STFTParams( |
|
window_length=w, |
|
hop_length=w // 4, |
|
match_stride=match_stride, |
|
window_type=window_type, |
|
) |
|
for w in window_lengths |
|
] |
|
self.loss_fn = loss_fn |
|
self.log_weight = log_weight |
|
self.mag_weight = mag_weight |
|
self.clamp_eps = clamp_eps |
|
self.weight = weight |
|
self.pow = pow |
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal): |
|
"""Computes multi-scale STFT between an estimate and a reference |
|
signal. |
|
|
|
Parameters |
|
---------- |
|
x : AudioSignal |
|
Estimate signal |
|
y : AudioSignal |
|
Reference signal |
|
|
|
Returns |
|
------- |
|
torch.Tensor |
|
Multi-scale STFT loss. |
|
""" |
|
loss = 0.0 |
|
for s in self.stft_params: |
|
x.stft(s.window_length, s.hop_length, s.window_type) |
|
y.stft(s.window_length, s.hop_length, s.window_type) |
|
loss += self.log_weight * self.loss_fn( |
|
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(), |
|
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(), |
|
) |
|
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude) |
|
return loss |
|
|
|
|
|
class MelSpectrogramLoss(nn.Module): |
|
"""Compute distance between mel spectrograms. Can be used |
|
in a multi-scale way. |
|
|
|
Parameters |
|
---------- |
|
n_mels : List[int] |
|
Number of mels per STFT, by default [150, 80], |
|
window_lengths : List[int], optional |
|
Length of each window of each STFT, by default [2048, 512] |
|
loss_fn : typing.Callable, optional |
|
How to compare each loss, by default nn.L1Loss() |
|
clamp_eps : float, optional |
|
Clamp on the log magnitude, below, by default 1e-5 |
|
mag_weight : float, optional |
|
Weight of raw magnitude portion of loss, by default 1.0 |
|
log_weight : float, optional |
|
Weight of log magnitude portion of loss, by default 1.0 |
|
pow : float, optional |
|
Power to raise magnitude to before taking log, by default 2.0 |
|
weight : float, optional |
|
Weight of this loss, by default 1.0 |
|
match_stride : bool, optional |
|
Whether to match the stride of convolutional layers, by default False |
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_mels: List[int] = [150, 80], |
|
window_lengths: List[int] = [2048, 512], |
|
loss_fn: typing.Callable = nn.L1Loss(), |
|
clamp_eps: float = 1e-5, |
|
mag_weight: float = 1.0, |
|
log_weight: float = 1.0, |
|
pow: float = 2.0, |
|
weight: float = 1.0, |
|
match_stride: bool = False, |
|
mel_fmin: List[float] = [0.0, 0.0], |
|
mel_fmax: List[float] = [None, None], |
|
window_type: str = None, |
|
): |
|
super().__init__() |
|
self.stft_params = [ |
|
STFTParams( |
|
window_length=w, |
|
hop_length=w // 4, |
|
match_stride=match_stride, |
|
window_type=window_type, |
|
) |
|
for w in window_lengths |
|
] |
|
self.n_mels = n_mels |
|
self.loss_fn = loss_fn |
|
self.clamp_eps = clamp_eps |
|
self.log_weight = log_weight |
|
self.mag_weight = mag_weight |
|
self.weight = weight |
|
self.mel_fmin = mel_fmin |
|
self.mel_fmax = mel_fmax |
|
self.pow = pow |
|
|
|
def forward(self, x: AudioSignal, y: AudioSignal): |
|
"""Computes mel loss between an estimate and a reference |
|
signal. |
|
|
|
Parameters |
|
---------- |
|
x : AudioSignal |
|
Estimate signal |
|
y : AudioSignal |
|
Reference signal |
|
|
|
Returns |
|
------- |
|
torch.Tensor |
|
Mel loss. |
|
""" |
|
loss = 0.0 |
|
for n_mels, fmin, fmax, s in zip( |
|
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params |
|
): |
|
kwargs = { |
|
"window_length": s.window_length, |
|
"hop_length": s.hop_length, |
|
"window_type": s.window_type, |
|
} |
|
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs) |
|
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs) |
|
|
|
loss += self.log_weight * self.loss_fn( |
|
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(), |
|
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(), |
|
) |
|
loss += self.mag_weight * self.loss_fn(x_mels, y_mels) |
|
return loss |
|
|
|
|
|
class FocalLoss(torch.nn.Module): |
|
def __init__(self, gamma=0, eps=1e-7): |
|
super(FocalLoss, self).__init__() |
|
self.gamma = gamma |
|
self.eps = eps |
|
self.ce = torch.nn.CrossEntropyLoss() |
|
|
|
def forward(self, input, target): |
|
logp = self.ce(input, target) |
|
p = torch.exp(-logp) |
|
loss = (1 - p) ** self.gamma * logp |
|
return loss.mean() |
|
|
|
|
|
class GANLoss(nn.Module): |
|
""" |
|
Computes a discriminator loss, given a discriminator on |
|
generated waveforms/spectrograms compared to ground truth |
|
waveforms/spectrograms. Computes the loss for both the |
|
discriminator and the generator in separate functions. |
|
""" |
|
|
|
def __init__(self, discriminator): |
|
super().__init__() |
|
self.discriminator = discriminator |
|
|
|
def forward(self, fake, real): |
|
d_fake = self.discriminator(fake.audio_data) |
|
d_real = self.discriminator(real.audio_data) |
|
return d_fake, d_real |
|
|
|
def discriminator_loss(self, fake, real): |
|
d_fake, d_real = self.forward(fake.clone().detach(), real) |
|
|
|
loss_d = 0 |
|
for x_fake, x_real in zip(d_fake, d_real): |
|
loss_d += torch.mean(x_fake[-1] ** 2) |
|
loss_d += torch.mean((1 - x_real[-1]) ** 2) |
|
return loss_d |
|
|
|
def generator_loss(self, fake, real): |
|
d_fake, d_real = self.forward(fake, real) |
|
|
|
loss_g = 0 |
|
for x_fake in d_fake: |
|
loss_g += torch.mean((1 - x_fake[-1]) ** 2) |
|
|
|
loss_feature = 0 |
|
|
|
for i in range(len(d_fake)): |
|
for j in range(len(d_fake[i]) - 1): |
|
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach()) |
|
return loss_g, loss_feature |
|
|