|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
from modules.wenet_extractor.utils.mask import make_pad_mask |
|
|
|
|
|
class Predictor(nn.Module): |
|
def __init__( |
|
self, |
|
idim, |
|
l_order, |
|
r_order, |
|
threshold=1.0, |
|
dropout=0.1, |
|
smooth_factor=1.0, |
|
noise_threshold=0, |
|
tail_threshold=0.45, |
|
): |
|
super().__init__() |
|
|
|
self.pad = nn.ConstantPad1d((l_order, r_order), 0.0) |
|
self.cif_conv1d = nn.Conv1d(idim, idim, l_order + r_order + 1, groups=idim) |
|
self.cif_output = nn.Linear(idim, 1) |
|
self.dropout = torch.nn.Dropout(p=dropout) |
|
self.threshold = threshold |
|
self.smooth_factor = smooth_factor |
|
self.noise_threshold = noise_threshold |
|
self.tail_threshold = tail_threshold |
|
|
|
def forward( |
|
self, |
|
hidden, |
|
target_label: Optional[torch.Tensor] = None, |
|
mask: torch.Tensor = torch.tensor(0), |
|
ignore_id: int = -1, |
|
mask_chunk_predictor: Optional[torch.Tensor] = None, |
|
target_label_length: Optional[torch.Tensor] = None, |
|
): |
|
h = hidden |
|
context = h.transpose(1, 2) |
|
queries = self.pad(context) |
|
memory = self.cif_conv1d(queries) |
|
output = memory + context |
|
output = self.dropout(output) |
|
output = output.transpose(1, 2) |
|
output = torch.relu(output) |
|
output = self.cif_output(output) |
|
alphas = torch.sigmoid(output) |
|
alphas = torch.nn.functional.relu( |
|
alphas * self.smooth_factor - self.noise_threshold |
|
) |
|
if mask is not None: |
|
mask = mask.transpose(-1, -2).float() |
|
alphas = alphas * mask |
|
if mask_chunk_predictor is not None: |
|
alphas = alphas * mask_chunk_predictor |
|
alphas = alphas.squeeze(-1) |
|
mask = mask.squeeze(-1) |
|
if target_label_length is not None: |
|
target_length = target_label_length |
|
elif target_label is not None: |
|
target_length = (target_label != ignore_id).float().sum(-1) |
|
else: |
|
target_length = None |
|
token_num = alphas.sum(-1) |
|
if target_length is not None: |
|
alphas *= (target_length / token_num)[:, None].repeat(1, alphas.size(1)) |
|
elif self.tail_threshold > 0.0: |
|
hidden, alphas, token_num = self.tail_process_fn( |
|
hidden, alphas, token_num, mask=mask |
|
) |
|
|
|
acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold) |
|
|
|
if target_length is None and self.tail_threshold > 0.0: |
|
token_num_int = torch.max(token_num).type(torch.int32).item() |
|
acoustic_embeds = acoustic_embeds[:, :token_num_int, :] |
|
|
|
return acoustic_embeds, token_num, alphas, cif_peak |
|
|
|
def tail_process_fn( |
|
self, |
|
hidden, |
|
alphas, |
|
token_num: Optional[torch.Tensor] = None, |
|
mask: Optional[torch.Tensor] = None, |
|
): |
|
b, t, d = hidden.size() |
|
tail_threshold = self.tail_threshold |
|
if mask is not None: |
|
zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device) |
|
ones_t = torch.ones_like(zeros_t) |
|
mask_1 = torch.cat([mask, zeros_t], dim=1) |
|
mask_2 = torch.cat([ones_t, mask], dim=1) |
|
mask = mask_2 - mask_1 |
|
tail_threshold = mask * tail_threshold |
|
alphas = torch.cat([alphas, zeros_t], dim=1) |
|
alphas = torch.add(alphas, tail_threshold) |
|
else: |
|
tail_threshold_tensor = torch.tensor( |
|
[tail_threshold], dtype=alphas.dtype |
|
).to(alphas.device) |
|
tail_threshold_tensor = torch.reshape(tail_threshold_tensor, (1, 1)) |
|
alphas = torch.cat([alphas, tail_threshold_tensor], dim=1) |
|
zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device) |
|
hidden = torch.cat([hidden, zeros], dim=1) |
|
token_num = alphas.sum(dim=-1) |
|
token_num_floor = torch.floor(token_num) |
|
|
|
return hidden, alphas, token_num_floor |
|
|
|
def gen_frame_alignments( |
|
self, alphas: torch.Tensor = None, encoder_sequence_length: torch.Tensor = None |
|
): |
|
batch_size, maximum_length = alphas.size() |
|
int_type = torch.int32 |
|
|
|
is_training = self.training |
|
if is_training: |
|
token_num = torch.round(torch.sum(alphas, dim=1)).type(int_type) |
|
else: |
|
token_num = torch.floor(torch.sum(alphas, dim=1)).type(int_type) |
|
|
|
max_token_num = torch.max(token_num).item() |
|
|
|
alphas_cumsum = torch.cumsum(alphas, dim=1) |
|
alphas_cumsum = torch.floor(alphas_cumsum).type(int_type) |
|
alphas_cumsum = alphas_cumsum[:, None, :].repeat(1, max_token_num, 1) |
|
|
|
index = torch.ones([batch_size, max_token_num], dtype=int_type) |
|
index = torch.cumsum(index, dim=1) |
|
index = index[:, :, None].repeat(1, 1, maximum_length).to(alphas_cumsum.device) |
|
|
|
index_div = torch.floor(torch.true_divide(alphas_cumsum, index)).type(int_type) |
|
index_div_bool_zeros = index_div.eq(0) |
|
index_div_bool_zeros_count = torch.sum(index_div_bool_zeros, dim=-1) + 1 |
|
index_div_bool_zeros_count = torch.clamp( |
|
index_div_bool_zeros_count, 0, encoder_sequence_length.max() |
|
) |
|
token_num_mask = (~make_pad_mask(token_num, max_len=max_token_num)).to( |
|
token_num.device |
|
) |
|
index_div_bool_zeros_count *= token_num_mask |
|
|
|
index_div_bool_zeros_count_tile = index_div_bool_zeros_count[:, :, None].repeat( |
|
1, 1, maximum_length |
|
) |
|
ones = torch.ones_like(index_div_bool_zeros_count_tile) |
|
zeros = torch.zeros_like(index_div_bool_zeros_count_tile) |
|
ones = torch.cumsum(ones, dim=2) |
|
cond = index_div_bool_zeros_count_tile == ones |
|
index_div_bool_zeros_count_tile = torch.where(cond, zeros, ones) |
|
|
|
index_div_bool_zeros_count_tile_bool = index_div_bool_zeros_count_tile.type( |
|
torch.bool |
|
) |
|
index_div_bool_zeros_count_tile = 1 - index_div_bool_zeros_count_tile_bool.type( |
|
int_type |
|
) |
|
index_div_bool_zeros_count_tile_out = torch.sum( |
|
index_div_bool_zeros_count_tile, dim=1 |
|
) |
|
index_div_bool_zeros_count_tile_out = index_div_bool_zeros_count_tile_out.type( |
|
int_type |
|
) |
|
predictor_mask = ( |
|
( |
|
~make_pad_mask( |
|
encoder_sequence_length, max_len=encoder_sequence_length.max() |
|
) |
|
) |
|
.type(int_type) |
|
.to(encoder_sequence_length.device) |
|
) |
|
index_div_bool_zeros_count_tile_out = ( |
|
index_div_bool_zeros_count_tile_out * predictor_mask |
|
) |
|
|
|
predictor_alignments = index_div_bool_zeros_count_tile_out |
|
predictor_alignments_length = predictor_alignments.sum(-1).type( |
|
encoder_sequence_length.dtype |
|
) |
|
return predictor_alignments.detach(), predictor_alignments_length.detach() |
|
|
|
|
|
class MAELoss(nn.Module): |
|
def __init__(self, normalize_length=False): |
|
super(MAELoss, self).__init__() |
|
self.normalize_length = normalize_length |
|
self.criterion = torch.nn.L1Loss(reduction="sum") |
|
|
|
def forward(self, token_length, pre_token_length): |
|
loss_token_normalizer = token_length.size(0) |
|
if self.normalize_length: |
|
loss_token_normalizer = token_length.sum().type(torch.float32) |
|
loss = self.criterion(token_length, pre_token_length) |
|
loss = loss / loss_token_normalizer |
|
return loss |
|
|
|
|
|
def cif(hidden: torch.Tensor, alphas: torch.Tensor, threshold: float): |
|
batch_size, len_time, hidden_size = hidden.size() |
|
|
|
|
|
integrate = torch.zeros([batch_size], device=hidden.device) |
|
frame = torch.zeros([batch_size, hidden_size], device=hidden.device) |
|
|
|
list_fires = [] |
|
list_frames = [] |
|
|
|
for t in range(len_time): |
|
alpha = alphas[:, t] |
|
distribution_completion = ( |
|
torch.ones([batch_size], device=hidden.device) - integrate |
|
) |
|
|
|
integrate += alpha |
|
list_fires.append(integrate) |
|
|
|
fire_place = integrate >= threshold |
|
integrate = torch.where( |
|
fire_place, |
|
integrate - torch.ones([batch_size], device=hidden.device), |
|
integrate, |
|
) |
|
cur = torch.where(fire_place, distribution_completion, alpha) |
|
remainds = alpha - cur |
|
|
|
frame += cur[:, None] * hidden[:, t, :] |
|
list_frames.append(frame) |
|
frame = torch.where( |
|
fire_place[:, None].repeat(1, hidden_size), |
|
remainds[:, None] * hidden[:, t, :], |
|
frame, |
|
) |
|
|
|
fires = torch.stack(list_fires, 1) |
|
frames = torch.stack(list_frames, 1) |
|
list_ls = [] |
|
len_labels = torch.round(alphas.sum(-1)).int() |
|
max_label_len = len_labels.max() |
|
for b in range(batch_size): |
|
fire = fires[b, :] |
|
l = torch.index_select( |
|
frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze() |
|
) |
|
pad_l = torch.zeros( |
|
[int(max_label_len - l.size(0)), hidden_size], device=hidden.device |
|
) |
|
list_ls.append(torch.cat([l, pad_l], 0)) |
|
return torch.stack(list_ls, 0), fires |
|
|