|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
import re |
|
import time |
|
from abc import abstractmethod |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import json5 |
|
import numpy as np |
|
import torch |
|
from accelerate.logging import get_logger |
|
from torch.utils.data import DataLoader |
|
|
|
from models.vocoders.vocoder_inference import synthesis |
|
from utils.io import save_audio |
|
from utils.util import load_config |
|
from utils.audio_slicer import is_silence |
|
|
|
EPS = 1.0e-12 |
|
|
|
|
|
class BaseInference(object): |
|
def __init__(self, args=None, cfg=None, infer_type="from_dataset"): |
|
super().__init__() |
|
|
|
start = time.monotonic_ns() |
|
self.args = args |
|
self.cfg = cfg |
|
|
|
assert infer_type in ["from_dataset", "from_file"] |
|
self.infer_type = infer_type |
|
|
|
|
|
self.accelerator = accelerate.Accelerator() |
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger = get_logger("inference", log_level=args.log_level) |
|
|
|
|
|
self.logger.info("=" * 56) |
|
self.logger.info("||\t\t" + "New inference process started." + "\t\t||") |
|
self.logger.info("=" * 56) |
|
self.logger.info("\n") |
|
self.logger.debug(f"Using {args.log_level.upper()} logging level.") |
|
|
|
self.acoustics_dir = args.acoustics_dir |
|
self.logger.debug(f"Acoustic dir: {args.acoustics_dir}") |
|
self.vocoder_dir = args.vocoder_dir |
|
self.logger.debug(f"Vocoder dir: {args.vocoder_dir}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
start = time.monotonic_ns() |
|
self._set_random_seed(self.cfg.train.random_seed) |
|
end = time.monotonic_ns() |
|
self.logger.debug( |
|
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building dataset...") |
|
start = time.monotonic_ns() |
|
self.test_dataloader = self._build_dataloader() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building model...") |
|
start = time.monotonic_ns() |
|
self.model = self._build_model() |
|
end = time.monotonic_ns() |
|
|
|
self.logger.info(f"Building model done in {(end - start) / 1e6:.3f}ms") |
|
|
|
|
|
self.logger.info("Initializing accelerate...") |
|
start = time.monotonic_ns() |
|
self.accelerator = accelerate.Accelerator() |
|
self.model = self.accelerator.prepare(self.model) |
|
end = time.monotonic_ns() |
|
self.accelerator.wait_for_everyone() |
|
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.3f}ms") |
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Loading checkpoint...") |
|
start = time.monotonic_ns() |
|
|
|
self.__load_model(os.path.join(args.acoustics_dir, "checkpoint")) |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Loading checkpoint done in {(end - start) / 1e6:.3f}ms") |
|
|
|
self.model.eval() |
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
@abstractmethod |
|
def _build_test_dataset(self): |
|
pass |
|
|
|
@abstractmethod |
|
def _build_model(self): |
|
pass |
|
|
|
@abstractmethod |
|
@torch.inference_mode() |
|
def _inference_each_batch(self, batch_data): |
|
pass |
|
|
|
|
|
|
|
@torch.inference_mode() |
|
def inference(self): |
|
for i, batch in enumerate(self.test_dataloader): |
|
y_pred = self._inference_each_batch(batch).cpu() |
|
|
|
|
|
if self.cfg.preprocess.use_min_max_norm_mel: |
|
mel_min, mel_max = self.test_dataset.target_mel_extrema |
|
y_pred = (y_pred + 1.0) / 2.0 * (mel_max - mel_min + EPS) + mel_min |
|
|
|
y_ls = y_pred.chunk(self.test_batch_size) |
|
tgt_ls = batch["target_len"].cpu().chunk(self.test_batch_size) |
|
j = 0 |
|
for it, l in zip(y_ls, tgt_ls): |
|
l = l.item() |
|
it = it.squeeze(0)[:l] |
|
uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"] |
|
torch.save(it, os.path.join(self.args.output_dir, f"{uid}.pt")) |
|
j += 1 |
|
|
|
vocoder_cfg, vocoder_ckpt = self._parse_vocoder(self.args.vocoder_dir) |
|
|
|
res = synthesis( |
|
cfg=vocoder_cfg, |
|
vocoder_weight_file=vocoder_ckpt, |
|
n_samples=None, |
|
pred=[ |
|
torch.load( |
|
os.path.join(self.args.output_dir, "{}.pt".format(i["Uid"])) |
|
).numpy(force=True) |
|
for i in self.test_dataset.metadata |
|
], |
|
) |
|
|
|
output_audio_files = [] |
|
for it, wav in zip(self.test_dataset.metadata, res): |
|
uid = it["Uid"] |
|
file = os.path.join(self.args.output_dir, f"{uid}.wav") |
|
output_audio_files.append(file) |
|
|
|
wav = wav.numpy(force=True) |
|
save_audio( |
|
file, |
|
wav, |
|
self.cfg.preprocess.sample_rate, |
|
add_silence=False, |
|
turn_up=not is_silence(wav, self.cfg.preprocess.sample_rate), |
|
) |
|
os.remove(os.path.join(self.args.output_dir, f"{uid}.pt")) |
|
|
|
return sorted(output_audio_files) |
|
|
|
|
|
def _build_dataloader(self): |
|
datasets, collate = self._build_test_dataset() |
|
self.test_dataset = datasets(self.args, self.cfg, self.infer_type) |
|
self.test_collate = collate(self.cfg) |
|
self.test_batch_size = min( |
|
self.cfg.train.batch_size, len(self.test_dataset.metadata) |
|
) |
|
test_dataloader = DataLoader( |
|
self.test_dataset, |
|
collate_fn=self.test_collate, |
|
num_workers=1, |
|
batch_size=self.test_batch_size, |
|
shuffle=False, |
|
) |
|
return test_dataloader |
|
|
|
def __load_model(self, checkpoint_dir: str = None, checkpoint_path: str = None): |
|
r"""Load model from checkpoint. If checkpoint_path is None, it will |
|
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not |
|
None, it will load the checkpoint specified by checkpoint_path. **Only use this |
|
method after** ``accelerator.prepare()``. |
|
""" |
|
if checkpoint_path is None: |
|
ls = [] |
|
for i in Path(checkpoint_dir).iterdir(): |
|
if re.match(r"epoch-\d+_step-\d+_loss-[\d.]+", str(i.stem)): |
|
ls.append(i) |
|
ls.sort( |
|
key=lambda x: int(x.stem.split("_")[-3].split("-")[-1]), reverse=True |
|
) |
|
checkpoint_path = ls[0] |
|
else: |
|
checkpoint_path = Path(checkpoint_path) |
|
self.accelerator.load_state(str(checkpoint_path)) |
|
|
|
self.epoch = int(checkpoint_path.stem.split("_")[-3].split("-")[-1]) |
|
self.step = int(checkpoint_path.stem.split("_")[-2].split("-")[-1]) |
|
return str(checkpoint_path) |
|
|
|
@staticmethod |
|
def _set_random_seed(seed): |
|
r"""Set random seed for all possible random modules.""" |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.random.manual_seed(seed) |
|
|
|
@staticmethod |
|
def _parse_vocoder(vocoder_dir): |
|
r"""Parse vocoder config""" |
|
vocoder_dir = os.path.abspath(vocoder_dir) |
|
ckpt_list = [ckpt for ckpt in Path(vocoder_dir).glob("*.pt")] |
|
ckpt_list.sort(key=lambda x: int(x.stem), reverse=True) |
|
ckpt_path = str(ckpt_list[0]) |
|
vocoder_cfg = load_config( |
|
os.path.join(vocoder_dir, "args.json"), lowercase=True |
|
) |
|
return vocoder_cfg, ckpt_path |
|
|
|
@staticmethod |
|
def __count_parameters(model): |
|
return sum(p.numel() for p in model.parameters()) |
|
|
|
def __dump_cfg(self, path): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
json5.dump( |
|
self.cfg, |
|
open(path, "w"), |
|
indent=4, |
|
sort_keys=True, |
|
ensure_ascii=False, |
|
quote_keys=True, |
|
) |
|
|