|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def normalization(channels: int, groups: int = 32): |
|
r"""Make a standard normalization layer, i.e. GroupNorm. |
|
|
|
Args: |
|
channels: number of input channels. |
|
groups: number of groups for group normalization. |
|
|
|
Returns: |
|
a ``nn.Module`` for normalization. |
|
""" |
|
assert groups > 0, f"invalid number of groups: {groups}" |
|
return nn.GroupNorm(groups, channels) |
|
|
|
|
|
def Linear(*args, **kwargs): |
|
r"""Wrapper of ``nn.Linear`` with kaiming_normal_ initialization.""" |
|
layer = nn.Linear(*args, **kwargs) |
|
nn.init.kaiming_normal_(layer.weight) |
|
return layer |
|
|
|
|
|
def Conv1d(*args, **kwargs): |
|
r"""Wrapper of ``nn.Conv1d`` with kaiming_normal_ initialization.""" |
|
layer = nn.Conv1d(*args, **kwargs) |
|
nn.init.kaiming_normal_(layer.weight) |
|
return layer |
|
|
|
|
|
def Conv2d(*args, **kwargs): |
|
r"""Wrapper of ``nn.Conv2d`` with kaiming_normal_ initialization.""" |
|
layer = nn.Conv2d(*args, **kwargs) |
|
nn.init.kaiming_normal_(layer.weight) |
|
return layer |
|
|
|
|
|
def ConvNd(dims: int = 1, *args, **kwargs): |
|
r"""Wrapper of N-dimension convolution with kaiming_normal_ initialization. |
|
|
|
Args: |
|
dims: number of dimensions of the convolution. |
|
""" |
|
if dims == 1: |
|
return Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return Conv2d(*args, **kwargs) |
|
else: |
|
raise ValueError(f"invalid number of dimensions: {dims}") |
|
|
|
|
|
def zero_module(module: nn.Module): |
|
r"""Zero out the parameters of a module and return it.""" |
|
nn.init.zeros_(module.weight) |
|
nn.init.zeros_(module.bias) |
|
return module |
|
|
|
|
|
def scale_module(module: nn.Module, scale): |
|
r"""Scale the parameters of a module and return it.""" |
|
for p in module.parameters(): |
|
p.detach().mul_(scale) |
|
return module |
|
|
|
|
|
def mean_flat(tensor: torch.Tensor): |
|
r"""Take the mean over all non-batch dimensions.""" |
|
return tensor.mean(dim=tuple(range(1, tensor.dim()))) |
|
|
|
|
|
def append_dims(x, target_dims): |
|
r"""Appends dimensions to the end of a tensor until |
|
it has target_dims dimensions. |
|
""" |
|
dims_to_append = target_dims - x.dim() |
|
if dims_to_append < 0: |
|
raise ValueError( |
|
f"input has {x.dim()} dims but target_dims is {target_dims}, which is less" |
|
) |
|
return x[(...,) + (None,) * dims_to_append] |
|
|
|
|
|
def append_zero(x, count=1): |
|
r"""Appends ``count`` zeros to the end of a tensor along the last dimension.""" |
|
assert count > 0, f"invalid count: {count}" |
|
return torch.cat([x, x.new_zeros((*x.size()[:-1], count))], dim=-1) |
|
|
|
|
|
class Transpose(nn.Identity): |
|
"""(N, T, D) -> (N, D, T)""" |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return input.transpose(1, 2) |
|
|