|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from modules.distributions.distributions import DiagonalGaussianDistribution |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class Upsample2d(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Upsample1d(Upsample2d): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__(in_channels, with_conv) |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv1d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
class Downsample2d(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
self.pad = (0, 1, 0, 1) |
|
else: |
|
self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
x = torch.nn.functional.pad(x, self.pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = self.avg_pool(x) |
|
return x |
|
|
|
|
|
class Downsample1d(Downsample2d): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__(in_channels, with_conv) |
|
if self.with_conv: |
|
|
|
|
|
self.conv = torch.nn.Conv1d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
self.pad = (1, 1) |
|
else: |
|
self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class ResnetBlock1d(ResnetBlock): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout, |
|
temb_channels=512 |
|
): |
|
super().__init__( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
conv_shortcut=conv_shortcut, |
|
dropout=dropout, |
|
) |
|
|
|
self.conv1 = torch.nn.Conv1d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.conv2 = torch.nn.Conv1d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv1d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv1d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
|
|
class Encoder2d(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
z_channels, |
|
double_z=True, |
|
**ignore_kwargs |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.in_channels = in_channels |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, out_channels=block_out, dropout=dropout |
|
) |
|
) |
|
block_in = block_out |
|
down = nn.Module() |
|
down.block = block |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample2d(block_in, resamp_with_conv) |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x): |
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1]) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
|
|
class Encoder1d(Encoder2d): ... |
|
|
|
|
|
class Decoder2d(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
z_channels, |
|
give_pre_end=False, |
|
**ignorekwargs |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
|
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
|
|
|
|
|
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, out_channels=block_in, dropout=dropout |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, out_channels=block_out, dropout=dropout |
|
) |
|
) |
|
block_in = block_out |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample2d(block_in, resamp_with_conv) |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z): |
|
self.last_z_shape = z.shape |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
|
|
class Decoder1d(Decoder2d): ... |
|
|
|
|
|
class AutoencoderKL(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.cfg = cfg |
|
self.encoder = Encoder2d( |
|
ch=cfg.ch, |
|
ch_mult=cfg.ch_mult, |
|
num_res_blocks=cfg.num_res_blocks, |
|
in_channels=cfg.in_channels, |
|
z_channels=cfg.z_channels, |
|
double_z=cfg.double_z, |
|
) |
|
self.decoder = Decoder2d( |
|
ch=cfg.ch, |
|
ch_mult=cfg.ch_mult, |
|
num_res_blocks=cfg.num_res_blocks, |
|
out_ch=cfg.out_ch, |
|
z_channels=cfg.z_channels, |
|
in_channels=None, |
|
) |
|
assert self.cfg.double_z |
|
|
|
self.quant_conv = torch.nn.Conv2d(2 * cfg.z_channels, 2 * cfg.z_channels, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(cfg.z_channels, cfg.z_channels, 1) |
|
self.embed_dim = cfg.z_channels |
|
|
|
def encode(self, x): |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
return posterior |
|
|
|
def decode(self, z): |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
return dec |
|
|
|
def forward(self, input, sample_posterior=True): |
|
posterior = self.encode(input) |
|
if sample_posterior: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z) |
|
return dec, posterior |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.weight |
|
|