|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import torchaudio |
|
import numpy as np |
|
import torch |
|
from utils.data_utils import * |
|
from torch.nn.utils.rnn import pad_sequence |
|
from text import text_to_sequence |
|
from text.text_token_collation import phoneIDCollation |
|
from processors.acoustic_extractor import cal_normalized_mel |
|
|
|
from models.base.base_dataset import ( |
|
BaseOfflineDataset, |
|
BaseOfflineCollator, |
|
BaseTestDataset, |
|
BaseTestCollator, |
|
) |
|
|
|
from processors.content_extractor import ( |
|
ContentvecExtractor, |
|
WenetExtractor, |
|
WhisperExtractor, |
|
) |
|
|
|
|
|
class TTSDataset(BaseOfflineDataset): |
|
def __init__(self, cfg, dataset, is_valid=False): |
|
""" |
|
Args: |
|
cfg: config |
|
dataset: dataset name |
|
is_valid: whether to use train or valid dataset |
|
""" |
|
|
|
assert isinstance(dataset, str) |
|
|
|
self.cfg = cfg |
|
|
|
processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset) |
|
meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file |
|
self.metafile_path = os.path.join(processed_data_dir, meta_file) |
|
self.metadata = self.get_metadata() |
|
|
|
""" |
|
load spk2id and utt2spk from json file |
|
spk2id: {spk1: 0, spk2: 1, ...} |
|
utt2spk: {dataset_uid: spk1, ...} |
|
""" |
|
if cfg.preprocess.use_spkid: |
|
dataset = self.metadata[0]["Dataset"] |
|
|
|
spk2id_path = os.path.join(processed_data_dir, cfg.preprocess.spk2id) |
|
with open(spk2id_path, "r") as f: |
|
self.spk2id = json.load(f) |
|
|
|
utt2spk_path = os.path.join(processed_data_dir, cfg.preprocess.utt2spk) |
|
self.utt2spk = dict() |
|
with open(utt2spk_path, "r") as f: |
|
for line in f.readlines(): |
|
utt, spk = line.strip().split("\t") |
|
self.utt2spk[utt] = spk |
|
|
|
if cfg.preprocess.use_uv: |
|
self.utt2uv_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
self.utt2uv_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.uv_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_frame_pitch: |
|
self.utt2frame_pitch_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2frame_pitch_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.pitch_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_frame_energy: |
|
self.utt2frame_energy_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2frame_energy_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.energy_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_mel: |
|
self.utt2mel_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2mel_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.mel_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_linear: |
|
self.utt2linear_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2linear_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.linear_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_audio: |
|
self.utt2audio_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
if cfg.preprocess.extract_audio: |
|
self.utt2audio_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.audio_dir, |
|
uid + ".wav", |
|
) |
|
else: |
|
self.utt2audio_path[utt] = utt_info["Path"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif cfg.preprocess.use_label: |
|
self.utt2label_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2label_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.label_dir, |
|
uid + ".npy", |
|
) |
|
elif cfg.preprocess.use_one_hot: |
|
self.utt2one_hot_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2one_hot_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.one_hot_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_text or cfg.preprocess.use_phone: |
|
self.utt2seq = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
if cfg.preprocess.use_text: |
|
text = utt_info["Text"] |
|
sequence = text_to_sequence(text, cfg.preprocess.text_cleaners) |
|
elif cfg.preprocess.use_phone: |
|
|
|
phone_path = os.path.join( |
|
processed_data_dir, cfg.preprocess.phone_dir, uid + ".phone" |
|
) |
|
with open(phone_path, "r") as fin: |
|
phones = fin.readlines() |
|
assert len(phones) == 1 |
|
phones = phones[0].strip() |
|
phones_seq = phones.split(" ") |
|
|
|
phon_id_collator = phoneIDCollation(cfg, dataset=dataset) |
|
sequence = phon_id_collator.get_phone_id_sequence(cfg, phones_seq) |
|
|
|
if cfg.preprocess.add_blank: |
|
sequence = intersperse(sequence, 0) |
|
|
|
self.utt2seq[utt] = sequence |
|
|
|
def __getitem__(self, index): |
|
utt_info = self.metadata[index] |
|
|
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
single_feature = dict() |
|
|
|
if self.cfg.preprocess.use_spkid: |
|
single_feature["spk_id"] = np.array( |
|
[self.spk2id[self.utt2spk[utt]]], dtype=np.int32 |
|
) |
|
|
|
if self.cfg.preprocess.use_mel: |
|
mel = np.load(self.utt2mel_path[utt]) |
|
assert mel.shape[0] == self.cfg.preprocess.n_mel |
|
if self.cfg.preprocess.use_min_max_norm_mel: |
|
|
|
mel = cal_normalized_mel(mel, utt_info["Dataset"], self.cfg.preprocess) |
|
|
|
if "target_len" not in single_feature.keys(): |
|
single_feature["target_len"] = mel.shape[1] |
|
single_feature["mel"] = mel.T |
|
|
|
if self.cfg.preprocess.use_linear: |
|
linear = np.load(self.utt2linear_path[utt]) |
|
if "target_len" not in single_feature.keys(): |
|
single_feature["target_len"] = linear.shape[1] |
|
single_feature["linear"] = linear.T |
|
|
|
if self.cfg.preprocess.use_frame_pitch: |
|
frame_pitch_path = self.utt2frame_pitch_path[utt] |
|
frame_pitch = np.load(frame_pitch_path) |
|
if "target_len" not in single_feature.keys(): |
|
single_feature["target_len"] = len(frame_pitch) |
|
aligned_frame_pitch = align_length( |
|
frame_pitch, single_feature["target_len"] |
|
) |
|
single_feature["frame_pitch"] = aligned_frame_pitch |
|
|
|
if self.cfg.preprocess.use_uv: |
|
frame_uv_path = self.utt2uv_path[utt] |
|
frame_uv = np.load(frame_uv_path) |
|
aligned_frame_uv = align_length(frame_uv, single_feature["target_len"]) |
|
aligned_frame_uv = [ |
|
0 if frame_uv else 1 for frame_uv in aligned_frame_uv |
|
] |
|
aligned_frame_uv = np.array(aligned_frame_uv) |
|
single_feature["frame_uv"] = aligned_frame_uv |
|
|
|
if self.cfg.preprocess.use_frame_energy: |
|
frame_energy_path = self.utt2frame_energy_path[utt] |
|
frame_energy = np.load(frame_energy_path) |
|
if "target_len" not in single_feature.keys(): |
|
single_feature["target_len"] = len(frame_energy) |
|
aligned_frame_energy = align_length( |
|
frame_energy, single_feature["target_len"] |
|
) |
|
single_feature["frame_energy"] = aligned_frame_energy |
|
|
|
if self.cfg.preprocess.use_audio: |
|
audio, sr = torchaudio.load(self.utt2audio_path[utt]) |
|
audio = audio.cpu().numpy().squeeze() |
|
single_feature["audio"] = audio |
|
single_feature["audio_len"] = audio.shape[0] |
|
|
|
if self.cfg.preprocess.use_phone or self.cfg.preprocess.use_text: |
|
single_feature["phone_seq"] = np.array(self.utt2seq[utt]) |
|
single_feature["phone_len"] = len(self.utt2seq[utt]) |
|
|
|
return single_feature |
|
|
|
def __len__(self): |
|
return super().__len__() |
|
|
|
def get_metadata(self): |
|
return super().get_metadata() |
|
|
|
|
|
class TTSCollator(BaseOfflineCollator): |
|
"""Zero-pads model inputs and targets based on number of frames per step""" |
|
|
|
def __init__(self, cfg): |
|
super().__init__(cfg) |
|
|
|
def __call__(self, batch): |
|
parsed_batch_features = super().__call__(batch) |
|
return parsed_batch_features |
|
|
|
|
|
class TTSTestDataset(BaseTestDataset): |
|
def __init__(self, args, cfg): |
|
self.cfg = cfg |
|
|
|
|
|
if args.test_list_file is not None: |
|
|
|
self.metadata = [] |
|
|
|
with open(args.test_list_file, "r") as fin: |
|
for idx, line in enumerate(fin.readlines()): |
|
utt_info = {} |
|
|
|
utt_info["Dataset"] = "test" |
|
utt_info["Text"] = line.strip() |
|
utt_info["Uid"] = str(idx) |
|
self.metadata.append(utt_info) |
|
|
|
else: |
|
assert args.testing_set |
|
self.metafile_path = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
args.dataset, |
|
"{}.json".format(args.testing_set), |
|
) |
|
self.metadata = self.get_metadata() |
|
|
|
def __getitem__(self, index): |
|
single_feature = {} |
|
|
|
return single_feature |
|
|
|
def __len__(self): |
|
return len(self.metadata) |
|
|
|
|
|
class TTSTestCollator(BaseTestCollator): |
|
"""Zero-pads model inputs and targets based on number of frames per step""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
|
|
def __call__(self, batch): |
|
packed_batch_features = dict() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for key in batch[0].keys(): |
|
if key == "target_len": |
|
packed_batch_features["target_len"] = torch.LongTensor( |
|
[b["target_len"] for b in batch] |
|
) |
|
masks = [ |
|
torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch |
|
] |
|
packed_batch_features["mask"] = pad_sequence( |
|
masks, batch_first=True, padding_value=0 |
|
) |
|
elif key == "phone_len": |
|
packed_batch_features["phone_len"] = torch.LongTensor( |
|
[b["phone_len"] for b in batch] |
|
) |
|
masks = [ |
|
torch.ones((b["phone_len"], 1), dtype=torch.long) for b in batch |
|
] |
|
packed_batch_features["phn_mask"] = pad_sequence( |
|
masks, batch_first=True, padding_value=0 |
|
) |
|
elif key == "audio_len": |
|
packed_batch_features["audio_len"] = torch.LongTensor( |
|
[b["audio_len"] for b in batch] |
|
) |
|
masks = [ |
|
torch.ones((b["audio_len"], 1), dtype=torch.long) for b in batch |
|
] |
|
else: |
|
values = [torch.from_numpy(b[key]) for b in batch] |
|
packed_batch_features[key] = pad_sequence( |
|
values, batch_first=True, padding_value=0 |
|
) |
|
return packed_batch_features |
|
|