|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Convolutional layers wrappers and utilities.""" |
|
|
|
import math |
|
import typing as tp |
|
import warnings |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn.utils import spectral_norm, weight_norm |
|
|
|
import typing as tp |
|
|
|
import einops |
|
|
|
|
|
class ConvLayerNorm(nn.LayerNorm): |
|
""" |
|
Convolution-friendly LayerNorm that moves channels to last dimensions |
|
before running the normalization and moves them back to original position right after. |
|
""" |
|
|
|
def __init__( |
|
self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs |
|
): |
|
super().__init__(normalized_shape, **kwargs) |
|
|
|
def forward(self, x): |
|
x = einops.rearrange(x, "b ... t -> b t ...") |
|
x = super().forward(x) |
|
x = einops.rearrange(x, "b t ... -> b ... t") |
|
return |
|
|
|
|
|
CONV_NORMALIZATIONS = frozenset( |
|
[ |
|
"none", |
|
"weight_norm", |
|
"spectral_norm", |
|
"time_layer_norm", |
|
"layer_norm", |
|
"time_group_norm", |
|
] |
|
) |
|
|
|
|
|
def apply_parametrization_norm(module: nn.Module, norm: str = "none") -> nn.Module: |
|
assert norm in CONV_NORMALIZATIONS |
|
if norm == "weight_norm": |
|
return weight_norm(module) |
|
elif norm == "spectral_norm": |
|
return spectral_norm(module) |
|
else: |
|
|
|
|
|
return module |
|
|
|
|
|
def get_norm_module( |
|
module: nn.Module, causal: bool = False, norm: str = "none", **norm_kwargs |
|
) -> nn.Module: |
|
"""Return the proper normalization module. If causal is True, this will ensure the returned |
|
module is causal, or return an error if the normalization doesn't support causal evaluation. |
|
""" |
|
assert norm in CONV_NORMALIZATIONS |
|
if norm == "layer_norm": |
|
assert isinstance(module, nn.modules.conv._ConvNd) |
|
return ConvLayerNorm(module.out_channels, **norm_kwargs) |
|
elif norm == "time_group_norm": |
|
if causal: |
|
raise ValueError("GroupNorm doesn't support causal evaluation.") |
|
assert isinstance(module, nn.modules.conv._ConvNd) |
|
return nn.GroupNorm(1, module.out_channels, **norm_kwargs) |
|
else: |
|
return nn.Identity() |
|
|
|
|
|
def get_extra_padding_for_conv1d( |
|
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 |
|
) -> int: |
|
"""See `pad_for_conv1d`.""" |
|
length = x.shape[-1] |
|
n_frames = (length - kernel_size + padding_total) / stride + 1 |
|
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) |
|
return ideal_length - length |
|
|
|
|
|
def pad_for_conv1d( |
|
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 |
|
): |
|
"""Pad for a convolution to make sure that the last window is full. |
|
Extra padding is added at the end. This is required to ensure that we can rebuild |
|
an output of the same length, as otherwise, even with padding, some time steps |
|
might get removed. |
|
For instance, with total padding = 4, kernel size = 4, stride = 2: |
|
0 0 1 2 3 4 5 0 0 # (0s are padding) |
|
1 2 3 # (output frames of a convolution, last 0 is never used) |
|
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding) |
|
1 2 3 4 # once you removed padding, we are missing one time step ! |
|
""" |
|
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) |
|
return F.pad(x, (0, extra_padding)) |
|
|
|
|
|
def pad1d( |
|
x: torch.Tensor, |
|
paddings: tp.Tuple[int, int], |
|
mode: str = "zero", |
|
value: float = 0.0, |
|
): |
|
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input. |
|
If this is the case, we insert extra 0 padding to the right before the reflection happen. |
|
""" |
|
length = x.shape[-1] |
|
padding_left, padding_right = paddings |
|
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) |
|
if mode == "reflect": |
|
max_pad = max(padding_left, padding_right) |
|
extra_pad = 0 |
|
if length <= max_pad: |
|
extra_pad = max_pad - length + 1 |
|
x = F.pad(x, (0, extra_pad)) |
|
padded = F.pad(x, paddings, mode, value) |
|
end = padded.shape[-1] - extra_pad |
|
return padded[..., :end] |
|
else: |
|
return F.pad(x, paddings, mode, value) |
|
|
|
|
|
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]): |
|
"""Remove padding from x, handling properly zero padding. Only for 1d!""" |
|
padding_left, padding_right = paddings |
|
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) |
|
assert (padding_left + padding_right) <= x.shape[-1] |
|
end = x.shape[-1] - padding_right |
|
return x[..., padding_left:end] |
|
|
|
|
|
class NormConv1d(nn.Module): |
|
"""Wrapper around Conv1d and normalization applied to this conv |
|
to provide a uniform interface across normalization approaches. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
causal: bool = False, |
|
norm: str = "none", |
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm) |
|
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs) |
|
self.norm_type = norm |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class NormConv2d(nn.Module): |
|
"""Wrapper around Conv2d and normalization applied to this conv |
|
to provide a uniform interface across normalization approaches. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
norm: str = "none", |
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm) |
|
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs) |
|
self.norm_type = norm |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class NormConvTranspose1d(nn.Module): |
|
"""Wrapper around ConvTranspose1d and normalization applied to this conv |
|
to provide a uniform interface across normalization approaches. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
causal: bool = False, |
|
norm: str = "none", |
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.convtr = apply_parametrization_norm( |
|
nn.ConvTranspose1d(*args, **kwargs), norm |
|
) |
|
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs) |
|
self.norm_type = norm |
|
|
|
def forward(self, x): |
|
x = self.convtr(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class NormConvTranspose2d(nn.Module): |
|
"""Wrapper around ConvTranspose2d and normalization applied to this conv |
|
to provide a uniform interface across normalization approaches. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
norm: str = "none", |
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.convtr = apply_parametrization_norm( |
|
nn.ConvTranspose2d(*args, **kwargs), norm |
|
) |
|
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs) |
|
|
|
def forward(self, x): |
|
x = self.convtr(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class SConv1d(nn.Module): |
|
"""Conv1d with some builtin handling of asymmetric or causal padding |
|
and normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
causal: bool = False, |
|
norm: str = "none", |
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, |
|
pad_mode: str = "reflect", |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
if stride > 1 and dilation > 1: |
|
warnings.warn( |
|
"SConv1d has been initialized with stride > 1 and dilation > 1" |
|
f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})." |
|
) |
|
self.conv = NormConv1d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=bias, |
|
causal=causal, |
|
norm=norm, |
|
norm_kwargs=norm_kwargs, |
|
) |
|
self.causal = causal |
|
self.pad_mode = pad_mode |
|
|
|
def forward(self, x): |
|
B, C, T = x.shape |
|
kernel_size = self.conv.conv.kernel_size[0] |
|
stride = self.conv.conv.stride[0] |
|
dilation = self.conv.conv.dilation[0] |
|
kernel_size = ( |
|
kernel_size - 1 |
|
) * dilation + 1 |
|
padding_total = kernel_size - stride |
|
extra_padding = get_extra_padding_for_conv1d( |
|
x, kernel_size, stride, padding_total |
|
) |
|
if self.causal: |
|
|
|
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode) |
|
else: |
|
|
|
padding_right = padding_total // 2 |
|
padding_left = padding_total - padding_right |
|
x = pad1d( |
|
x, (padding_left, padding_right + extra_padding), mode=self.pad_mode |
|
) |
|
return self.conv(x) |
|
|
|
|
|
class SConvTranspose1d(nn.Module): |
|
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding |
|
and normalization. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
causal: bool = False, |
|
norm: str = "none", |
|
trim_right_ratio: float = 1.0, |
|
norm_kwargs: tp.Dict[str, tp.Any] = {}, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.convtr = NormConvTranspose1d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
causal=causal, |
|
norm=norm, |
|
norm_kwargs=norm_kwargs, |
|
) |
|
self.causal = causal |
|
self.trim_right_ratio = trim_right_ratio |
|
assert ( |
|
self.causal or self.trim_right_ratio == 1.0 |
|
), "`trim_right_ratio` != 1.0 only makes sense for causal convolutions" |
|
assert self.trim_right_ratio >= 0.0 and self.trim_right_ratio <= 1.0 |
|
|
|
def forward(self, x): |
|
kernel_size = self.convtr.convtr.kernel_size[0] |
|
stride = self.convtr.convtr.stride[0] |
|
padding_total = kernel_size - stride |
|
|
|
y = self.convtr(x) |
|
|
|
|
|
|
|
|
|
|
|
if self.causal: |
|
|
|
|
|
padding_right = math.ceil(padding_total * self.trim_right_ratio) |
|
padding_left = padding_total - padding_right |
|
y = unpad1d(y, (padding_left, padding_right)) |
|
else: |
|
|
|
padding_right = padding_total // 2 |
|
padding_left = padding_total - padding_right |
|
y = unpad1d(y, (padding_left, padding_right)) |
|
return y |
|
|
|
|
|
class SLSTM(nn.Module): |
|
""" |
|
LSTM without worrying about the hidden state, nor the layout of the data. |
|
Expects input as convolutional layout. |
|
""" |
|
|
|
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True): |
|
super().__init__() |
|
self.skip = skip |
|
self.lstm = nn.LSTM(dimension, dimension, num_layers) |
|
self.hidden = None |
|
|
|
def forward(self, x): |
|
x = x.permute(2, 0, 1) |
|
if self.training: |
|
y, _ = self.lstm(x) |
|
else: |
|
y, self.hidden = self.lstm(x, self.hidden) |
|
if self.skip: |
|
y = y + x |
|
y = y.permute(1, 2, 0) |
|
return y |
|
|