|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from .Modules import ScaledDotProductAttention |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
"""Multi-Head Attention module""" |
|
|
|
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): |
|
super().__init__() |
|
|
|
self.n_head = n_head |
|
self.d_k = d_k |
|
self.d_v = d_v |
|
|
|
self.w_qs = nn.Linear(d_model, n_head * d_k) |
|
self.w_ks = nn.Linear(d_model, n_head * d_k) |
|
self.w_vs = nn.Linear(d_model, n_head * d_v) |
|
|
|
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) |
|
self.layer_norm = nn.LayerNorm(d_model) |
|
|
|
self.fc = nn.Linear(n_head * d_v, d_model) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, q, k, v, mask=None): |
|
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head |
|
|
|
sz_b, len_q, _ = q.size() |
|
sz_b, len_k, _ = k.size() |
|
sz_b, len_v, _ = v.size() |
|
|
|
residual = q |
|
|
|
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) |
|
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) |
|
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) |
|
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) |
|
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) |
|
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) |
|
|
|
mask = mask.repeat(n_head, 1, 1) |
|
output, attn = self.attention(q, k, v, mask=mask) |
|
|
|
output = output.view(n_head, sz_b, len_q, d_v) |
|
output = ( |
|
output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) |
|
) |
|
|
|
output = self.dropout(self.fc(output)) |
|
output = self.layer_norm(output + residual) |
|
|
|
return output, attn |
|
|
|
|
|
class PositionwiseFeedForward(nn.Module): |
|
"""A two-feed-forward-layer module""" |
|
|
|
def __init__(self, d_in, d_hid, kernel_size, dropout=0.1): |
|
super().__init__() |
|
|
|
|
|
|
|
self.w_1 = nn.Conv1d( |
|
d_in, |
|
d_hid, |
|
kernel_size=kernel_size[0], |
|
padding=(kernel_size[0] - 1) // 2, |
|
) |
|
|
|
self.w_2 = nn.Conv1d( |
|
d_hid, |
|
d_in, |
|
kernel_size=kernel_size[1], |
|
padding=(kernel_size[1] - 1) // 2, |
|
) |
|
|
|
self.layer_norm = nn.LayerNorm(d_in) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
residual = x |
|
output = x.transpose(1, 2) |
|
output = self.w_2(F.relu(self.w_1(output))) |
|
output = output.transpose(1, 2) |
|
output = self.dropout(output) |
|
output = self.layer_norm(output + residual) |
|
|
|
return output |
|
|