|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Encoder self-attention layer definition.""" |
|
|
|
from typing import Optional, Tuple |
|
import torch |
|
from torch import nn |
|
|
|
|
|
class StrideConformerEncoderLayer(nn.Module): |
|
"""Encoder layer module. |
|
Args: |
|
size (int): Input dimension. |
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` |
|
instance can be used as the argument. |
|
feed_forward (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
feed_forward_macaron (torch.nn.Module): Additional feed-forward module |
|
instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
conv_module (torch.nn.Module): Convolution module instance. |
|
`ConvlutionModule` instance can be used as the argument. |
|
dropout_rate (float): Dropout rate. |
|
normalize_before (bool): |
|
True: use layer_norm before each sub-block. |
|
False: use layer_norm after each sub-block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
self_attn: torch.nn.Module, |
|
feed_forward: Optional[nn.Module] = None, |
|
feed_forward_macaron: Optional[nn.Module] = None, |
|
conv_module: Optional[nn.Module] = None, |
|
pointwise_conv_layer: Optional[nn.Module] = None, |
|
dropout_rate: float = 0.1, |
|
normalize_before: bool = True, |
|
): |
|
"""Construct an EncoderLayer object.""" |
|
super().__init__() |
|
self.self_attn = self_attn |
|
self.feed_forward = feed_forward |
|
self.feed_forward_macaron = feed_forward_macaron |
|
self.conv_module = conv_module |
|
self.pointwise_conv_layer = pointwise_conv_layer |
|
self.norm_ff = nn.LayerNorm(size, eps=1e-5) |
|
self.norm_mha = nn.LayerNorm(size, eps=1e-5) |
|
if feed_forward_macaron is not None: |
|
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5) |
|
self.ff_scale = 0.5 |
|
else: |
|
self.ff_scale = 1.0 |
|
if self.conv_module is not None: |
|
self.norm_conv = nn.LayerNorm(size, eps=1e-5) |
|
self.norm_final = nn.LayerNorm( |
|
size, eps=1e-5 |
|
) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.size = size |
|
self.normalize_before = normalize_before |
|
self.concat_linear = nn.Linear(size + size, size) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Compute encoded features. |
|
|
|
Args: |
|
x (torch.Tensor): (#batch, time, size) |
|
mask (torch.Tensor): Mask tensor for the input (#batch, timeοΌtime), |
|
(0, 0, 0) means fake mask. |
|
pos_emb (torch.Tensor): positional encoding, must not be None |
|
for ConformerEncoderLayer. |
|
mask_pad (torch.Tensor): batch padding mask used for conv module. |
|
(#batch, 1οΌtime), (0, 0, 0) means fake mask. |
|
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE |
|
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. |
|
cnn_cache (torch.Tensor): Convolution cache in conformer layer |
|
(#batch=1, size, cache_t2) |
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, size). |
|
torch.Tensor: Mask tensor (#batch, time, time). |
|
torch.Tensor: att_cache tensor, |
|
(#batch=1, head, cache_t1 + time, d_k * 2). |
|
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). |
|
""" |
|
|
|
|
|
if self.feed_forward_macaron is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_ff_macaron(x) |
|
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x)) |
|
if not self.normalize_before: |
|
x = self.norm_ff_macaron(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_mha(x) |
|
|
|
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache) |
|
|
|
x = residual + self.dropout(x_att) |
|
if not self.normalize_before: |
|
x = self.norm_mha(x) |
|
|
|
|
|
|
|
new_cnn_cache = torch.tensor([0.0], dtype=x.dtype, device=x.device) |
|
if self.conv_module is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_conv(x) |
|
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) |
|
|
|
|
|
|
|
if self.pointwise_conv_layer is not None: |
|
residual = residual.transpose(1, 2) |
|
residual = self.pointwise_conv_layer(residual) |
|
residual = residual.transpose(1, 2) |
|
assert residual.size(0) == x.size(0) |
|
assert residual.size(1) == x.size(1) |
|
assert residual.size(2) == x.size(2) |
|
|
|
x = residual + self.dropout(x) |
|
|
|
if not self.normalize_before: |
|
x = self.norm_conv(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm_ff(x) |
|
|
|
x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) |
|
if not self.normalize_before: |
|
x = self.norm_ff(x) |
|
|
|
if self.conv_module is not None: |
|
x = self.norm_final(x) |
|
|
|
return x, mask, new_att_cache, new_cnn_cache |
|
|