|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Subsampling layer definition.""" |
|
|
|
from typing import Tuple, Union |
|
|
|
import torch |
|
from modules.wenet_extractor.transformer.subsampling import BaseSubsampling |
|
|
|
|
|
class Conv2dSubsampling2(BaseSubsampling): |
|
"""Convolutional 2D subsampling (to 1/4 length). |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, idim: int, odim: int, dropout_rate: float, pos_enc_class: torch.nn.Module |
|
): |
|
"""Construct an Conv2dSubsampling4 object.""" |
|
super().__init__() |
|
self.conv = torch.nn.Sequential(torch.nn.Conv2d(1, odim, 3, 2), torch.nn.ReLU()) |
|
self.out = torch.nn.Sequential(torch.nn.Linear(odim * ((idim - 1) // 2), odim)) |
|
self.pos_enc = pos_enc_class |
|
|
|
|
|
self.subsampling_rate = 2 |
|
|
|
self.right_context = 2 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Subsample x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: Subsampled tensor (#batch, time', odim), |
|
where time' = time // 2. |
|
torch.Tensor: Subsampled mask (#batch, 1, time'), |
|
where time' = time // 2. |
|
torch.Tensor: positional encoding |
|
|
|
""" |
|
x = x.unsqueeze(1) |
|
x = self.conv(x) |
|
b, c, t, f = x.size() |
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask[:, :, :-2:2] |
|
|