Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import librosa
import numpy as np
import sys
import os
import tqdm
import warnings
import torch
from pydub import AudioSegment
from pyannote.audio import Pipeline
import pandas as pd
from utils.tool import (
export_to_mp3,
load_cfg,
get_audio_files,
detect_gpu,
check_env,
calculate_audio_stats,
)
from utils.logger import Logger, time_logger
from models import separate_fast, dnsmos, whisper_asr, silero_vad
warnings.filterwarnings("ignore")
audio_count = 0
@time_logger
def standardization(audio):
"""
Preprocess the audio file, including setting sample rate, bit depth, channels, and volume normalization.
Args:
audio (str or AudioSegment): Audio file path or AudioSegment object, the audio to be preprocessed.
Returns:
dict: A dictionary containing the preprocessed audio waveform, audio file name, and sample rate, formatted as:
{
"waveform": np.ndarray, the preprocessed audio waveform, dtype is np.float32, shape is (num_samples,)
"name": str, the audio file name
"sample_rate": int, the audio sample rate
}
Raises:
ValueError: If the audio parameter is neither a str nor an AudioSegment.
"""
global audio_count
name = "audio"
if isinstance(audio, str):
name = os.path.basename(audio)
audio = AudioSegment.from_file(audio)
elif isinstance(audio, AudioSegment):
name = f"audio_{audio_count}"
audio_count += 1
else:
raise ValueError("Invalid audio type")
logger.debug("Entering the preprocessing of audio")
# Convert the audio file to WAV format
audio = audio.set_frame_rate(cfg["entrypoint"]["SAMPLE_RATE"])
audio = audio.set_sample_width(2) # Set bit depth to 16bit
audio = audio.set_channels(1) # Set to mono
logger.debug("Audio file converted to WAV format")
# Calculate the gain to be applied
target_dBFS = -20
gain = target_dBFS - audio.dBFS
logger.info(f"Calculating the gain needed for the audio: {gain} dB")
# Normalize volume and limit gain range to between -3 and 3
normalized_audio = audio.apply_gain(min(max(gain, -3), 3))
waveform = np.array(normalized_audio.get_array_of_samples(), dtype=np.float32)
max_amplitude = np.max(np.abs(waveform))
waveform /= max_amplitude # Normalize
logger.debug(f"waveform shape: {waveform.shape}")
logger.debug("waveform in np ndarray, dtype=" + str(waveform.dtype))
return {
"waveform": waveform,
"name": name,
"sample_rate": cfg["entrypoint"]["SAMPLE_RATE"],
}
@time_logger
def source_separation(predictor, audio):
"""
Separate the audio into vocals and non-vocals using the given predictor.
Args:
predictor: The separation model predictor.
audio (str or dict): The audio file path or a dictionary containing audio waveform and sample rate.
Returns:
dict: A dictionary containing the separated vocals and updated audio waveform.
"""
mix, rate = None, None
if isinstance(audio, str):
mix, rate = librosa.load(audio, mono=False, sr=44100)
else:
# resample to 44100
rate = audio["sample_rate"]
mix = librosa.resample(audio["waveform"], orig_sr=rate, target_sr=44100)
vocals, no_vocals = predictor.predict(mix)
# convert vocals back to previous sample rate
logger.debug(f"vocals shape before resample: {vocals.shape}")
vocals = librosa.resample(vocals.T, orig_sr=44100, target_sr=rate).T
logger.debug(f"vocals shape after resample: {vocals.shape}")
audio["waveform"] = vocals[:, 0] # vocals is stereo, only use one channel
return audio
# Step 2: Speaker Diarization
@time_logger
def speaker_diarization(audio):
"""
Perform speaker diarization on the given audio.
Args:
audio (dict): A dictionary containing the audio waveform and sample rate.
Returns:
pd.DataFrame: A dataframe containing segments with speaker labels.
"""
logger.debug(f"Start speaker diarization")
logger.debug(f"audio waveform shape: {audio['waveform'].shape}")
waveform = torch.tensor(audio["waveform"]).to(device)
waveform = torch.unsqueeze(waveform, 0)
segments = dia_pipeline(
{
"waveform": waveform,
"sample_rate": audio["sample_rate"],
"channel": 0,
}
)
diarize_df = pd.DataFrame(
segments.itertracks(yield_label=True),
columns=["segment", "label", "speaker"],
)
diarize_df["start"] = diarize_df["segment"].apply(lambda x: x.start)
diarize_df["end"] = diarize_df["segment"].apply(lambda x: x.end)
logger.debug(f"diarize_df: {diarize_df}")
return diarize_df
@time_logger
def cut_by_speaker_label(vad_list):
"""
Merge and trim VAD segments by speaker labels, enforcing constraints on segment length and merge gaps.
Args:
vad_list (list): List of VAD segments with start, end, and speaker labels.
Returns:
list: A list of updated VAD segments after merging and trimming.
"""
MERGE_GAP = 2 # merge gap in seconds, if smaller than this, merge
MIN_SEGMENT_LENGTH = 3 # min segment length in seconds
MAX_SEGMENT_LENGTH = 30 # max segment length in seconds
updated_list = []
for idx, vad in enumerate(vad_list):
last_start_time = updated_list[-1]["start"] if updated_list else None
last_end_time = updated_list[-1]["end"] if updated_list else None
last_speaker = updated_list[-1]["speaker"] if updated_list else None
if vad["end"] - vad["start"] >= MAX_SEGMENT_LENGTH:
current_start = vad["start"]
segment_end = vad["end"]
logger.warning(
f"cut_by_speaker_label > segment longer than 30s, force trimming to 30s smaller segments"
)
while segment_end - current_start >= MAX_SEGMENT_LENGTH:
vad["end"] = current_start + MAX_SEGMENT_LENGTH # update end time
updated_list.append(vad)
vad = vad.copy()
current_start += MAX_SEGMENT_LENGTH
vad["start"] = current_start # update start time
vad["end"] = segment_end
updated_list.append(vad)
continue
if (
last_speaker is None
or last_speaker != vad["speaker"]
or vad["end"] - vad["start"] >= MIN_SEGMENT_LENGTH
):
updated_list.append(vad)
continue
if (
vad["start"] - last_end_time >= MERGE_GAP
or vad["end"] - last_start_time >= MAX_SEGMENT_LENGTH
):
updated_list.append(vad)
else:
updated_list[-1]["end"] = vad["end"] # merge the time
logger.debug(
f"cut_by_speaker_label > merged {len(vad_list) - len(updated_list)} segments"
)
filter_list = [
vad for vad in updated_list if vad["end"] - vad["start"] >= MIN_SEGMENT_LENGTH
]
logger.debug(
f"cut_by_speaker_label > removed: {len(updated_list) - len(filter_list)} segments by length"
)
return filter_list
@time_logger
def asr(vad_segments, audio):
"""
Perform Automatic Speech Recognition (ASR) on the VAD segments of the given audio.
Args:
vad_segments (list): List of VAD segments with start and end times.
audio (dict): A dictionary containing the audio waveform and sample rate.
Returns:
list: A list of ASR results with transcriptions and language details.
"""
if len(vad_segments) == 0:
return []
temp_audio = audio["waveform"]
start_time = vad_segments[0]["start"]
end_time = vad_segments[-1]["end"]
start_frame = int(start_time * audio["sample_rate"])
end_frame = int(end_time * audio["sample_rate"])
temp_audio = temp_audio[start_frame:end_frame] # remove silent start and end
# update vad_segments start and end time (this is a little trick for batched asr:)
for idx, segment in enumerate(vad_segments):
vad_segments[idx]["start"] -= start_time
vad_segments[idx]["end"] -= start_time
# resample to 16k
temp_audio = librosa.resample(
temp_audio, orig_sr=audio["sample_rate"], target_sr=16000
)
if multilingual_flag:
logger.debug("Multilingual flag is on")
valid_vad_segments, valid_vad_segments_language = [], []
# get valid segments to be transcripted
for idx, segment in enumerate(vad_segments):
start_frame = int(segment["start"] * 16000)
end_frame = int(segment["end"] * 16000)
segment_audio = temp_audio[start_frame:end_frame]
language, prob = asr_model.detect_language(segment_audio)
# 1. if language is in supported list, 2. if prob > 0.8
if language in supported_languages and prob > 0.8:
valid_vad_segments.append(vad_segments[idx])
valid_vad_segments_language.append(language)
# if no valid segment, return empty
if len(valid_vad_segments) == 0:
return []
all_transcribe_result = []
logger.debug(f"valid_vad_segments_language: {valid_vad_segments_language}")
unique_languages = list(set(valid_vad_segments_language))
logger.debug(f"unique_languages: {unique_languages}")
# process each language one by one
for language_token in unique_languages:
language = language_token
# filter out segments with different language
vad_segments = [
valid_vad_segments[i]
for i, x in enumerate(valid_vad_segments_language)
if x == language
]
# bacthed trascription
transcribe_result_temp = asr_model.transcribe(
temp_audio,
vad_segments,
batch_size=batch_size,
language=language,
print_progress=True,
)
result = transcribe_result_temp["segments"]
# restore the segment annotation
for idx, segment in enumerate(result):
result[idx]["start"] += start_time
result[idx]["end"] += start_time
result[idx]["language"] = transcribe_result_temp["language"]
all_transcribe_result.extend(result)
# sort by start time
all_transcribe_result = sorted(all_transcribe_result, key=lambda x: x["start"])
return all_transcribe_result
else:
logger.debug("Multilingual flag is off")
language, prob = asr_model.detect_language(temp_audio)
if language in supported_languages and prob > 0.8:
transcribe_result = asr_model.transcribe(
temp_audio,
vad_segments,
batch_size=batch_size,
language=language,
print_progress=True,
)
result = transcribe_result["segments"]
for idx, segment in enumerate(result):
result[idx]["start"] += start_time
result[idx]["end"] += start_time
result[idx]["language"] = transcribe_result["language"]
return result
else:
return []
@time_logger
def mos_prediction(audio, vad_list):
"""
Predict the Mean Opinion Score (MOS) for the given audio and VAD segments.
Args:
audio (dict): A dictionary containing the audio waveform and sample rate.
vad_list (list): List of VAD segments with start and end times.
Returns:
tuple: A tuple containing the average MOS and the updated VAD segments with MOS scores.
"""
audio = audio["waveform"]
sample_rate = 16000
audio = librosa.resample(
audio, orig_sr=cfg["entrypoint"]["SAMPLE_RATE"], target_sr=sample_rate
)
for index, vad in enumerate(tqdm.tqdm(vad_list, desc="DNSMOS")):
start, end = int(vad["start"] * sample_rate), int(vad["end"] * sample_rate)
segment = audio[start:end]
dnsmos = dnsmos_compute_score(segment, sample_rate, False)["OVRL"]
vad_list[index]["dnsmos"] = dnsmos
predict_dnsmos = np.mean([vad["dnsmos"] for vad in vad_list])
logger.debug(f"avg predict_dnsmos for whole audio: {predict_dnsmos}")
return predict_dnsmos, vad_list
def filter(mos_list):
"""
Filter out the segments with MOS scores, wrong char duration, and total duration.
Args:
mos_list (list): List of VAD segments with MOS scores.
Returns:
list: A list of VAD segments with MOS scores above the average MOS.
"""
filtered_audio_stats, all_audio_stats = calculate_audio_stats(mos_list)
filtered_segment = len(filtered_audio_stats)
all_segment = len(all_audio_stats)
logger.debug(
f"> {all_segment - filtered_segment}/{all_segment} {(all_segment - filtered_segment) / all_segment:.2%} segments filtered."
)
filtered_list = [mos_list[idx] for idx, _ in filtered_audio_stats]
return filtered_list
def main_process(audio_path, save_path=None, audio_name=None):
"""
Process the audio file, including standardization, source separation, speaker segmentation, VAD, ASR, export to MP3, and MOS prediction.
Args:
audio_path (str): Audio file path.
save_path (str, optional): Save path, defaults to None, which means saving in the "_processed" folder in the audio file's directory.
audio_name (str, optional): Audio file name, defaults to None, which means using the file name from the audio file path.
Returns:
tuple: Contains the save path and the MOS list.
"""
if not audio_path.endswith((".mp3", ".wav", ".flac", ".m4a", ".aac")):
logger.warning(f"Unsupported file type: {audio_path}")
# for a single audio from path รaaa/bbb/ccc.wav ---> save to aaa/bbb_processed/ccc/ccc_0.wav
audio_name = audio_name or os.path.splitext(os.path.basename(audio_path))[0]
save_path = save_path or os.path.join(
os.path.dirname(audio_path) + "_processed", audio_name
)
os.makedirs(save_path, exist_ok=True)
logger.debug(
f"Processing audio: {audio_name}, from {audio_path}, save to: {save_path}"
)
logger.info(
"Step 0: Preprocess all audio files --> 24k sample rate + wave format + loudnorm + bit depth 16"
)
audio = standardization(audio_path)
logger.info("Step 1: Source Separation")
audio = source_separation(separate_predictor1, audio)
logger.info("Step 2: Speaker Diarization")
speakerdia = speaker_diarization(audio)
logger.info("Step 3: Fine-grained Segmentation by VAD")
vad_list = vad.vad(speakerdia, audio)
segment_list = cut_by_speaker_label(vad_list) # post process after vad
logger.info("Step 4: ASR")
asr_result = asr(segment_list, audio)
logger.info("Step 5: Filter")
logger.info("Step 5.1: calculate mos_prediction")
avg_mos, mos_list = mos_prediction(audio, asr_result)
logger.info(f"Step 5.1: done, average MOS: {avg_mos}")
logger.info("Step 5.2: Filter out files with less than average MOS")
filtered_list = filter(mos_list)
logger.info("Step 6: write result into MP3 and JSON file")
export_to_mp3(audio, filtered_list, save_path, audio_name)
final_path = os.path.join(save_path, audio_name + ".json")
with open(final_path, "w") as f:
json.dump(filtered_list, f, ensure_ascii=False)
logger.info(f"All done, Saved to: {final_path}")
return final_path, filtered_list
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_folder_path",
type=str,
default="",
help="input folder path, this will override config if set",
)
parser.add_argument(
"--config_path", type=str, default="config.json", help="config path"
)
parser.add_argument("--batch_size", type=int, default=16, help="batch size")
parser.add_argument(
"--compute_type",
type=str,
default="float16",
help="The compute type to use for the model",
)
parser.add_argument(
"--whisper_arch",
type=str,
default="medium",
help="The name of the Whisper model to load.",
)
parser.add_argument(
"--threads",
type=int,
default=4,
help="The number of CPU threads to use per worker, e.g. will be multiplied by num workers.",
)
parser.add_argument(
"--exit_pipeline",
type=bool,
default=False,
help="Exit pipeline when task done.",
)
args = parser.parse_args()
batch_size = args.batch_size
cfg = load_cfg(args.config_path)
logger = Logger.get_logger()
if args.input_folder_path:
logger.info(f"Using input folder path: {args.input_folder_path}")
cfg["entrypoint"]["input_folder_path"] = args.input_folder_path
logger.debug("Loading models...")
# Load models
if detect_gpu():
logger.info("Using GPU")
device_name = "cuda"
device = torch.device(device_name)
else:
logger.info("Using CPU")
device_name = "cpu"
device = torch.device(device_name)
check_env(logger)
# Speaker Diarization
logger.debug(" * Loading Speaker Diarization Model")
if not cfg["huggingface_token"].startswith("hf"):
raise ValueError(
"huggingface_token must start with 'hf', check the config file. "
"You can get the token at https://huggingface.co/settings/tokens. "
"Remeber grant access following https://github.com/pyannote/pyannote-audio?tab=readme-ov-file#tldr"
)
dia_pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=cfg["huggingface_token"],
)
dia_pipeline.to(device)
# ASR
logger.debug(" * Loading ASR Model")
asr_model = whisper_asr.load_asr_model(
args.whisper_arch,
device_name,
compute_type=args.compute_type,
threads=args.threads,
asr_options={
"initial_prompt": "Um, Uh, Ah. Like, you know. I mean, right. Actually. Basically, and right? okay. Alright. Emm. So. Oh. ็”ŸไบŽๅฟงๆ‚ฃ,ๆญปไบŽๅฎ‰ไนใ€‚ๅฒ‚ไธๅฟซๅ“‰?ๅฝ“็„ถ,ๅ—ฏ,ๅ‘ƒ,ๅฐฑ,่ฟ™ๆ ท,้‚ฃไธช,ๅ“ชไธช,ๅ•Š,ๅ‘€,ๅ“Žๅ‘€,ๅ“Žๅ“Ÿ,ๅ”‰ๅ“‡,ๅ•ง,ๅ”ท,ๅ“Ÿ,ๅ™ซ!ๅพฎๆ–ฏไบบ,ๅพ่ฐไธŽๅฝ’?ใˆใˆใจใ€ใ‚ใฎใ€ใพใ€ใใ†ใ€ใˆใˆใ€‚รคh, hm, so, tja, halt, eigentlich. euh, quoi, bah, ben, tu vois, tu sais, t'sais, eh bien, du coup. genre, comme, style. ์‘,์–ด,๊ทธ,์Œ."
},
)
# VAD
logger.debug(" * Loading VAD Model")
vad = silero_vad.SileroVAD(device=device)
# Background Noise Separation
logger.debug(" * Loading Background Noise Model")
separate_predictor1 = separate_fast.Predictor(
args=cfg["separate"]["step1"], device=device_name
)
# DNSMOS Scoring
logger.debug(" * Loading DNSMOS Model")
primary_model_path = cfg["mos_model"]["primary_model_path"]
dnsmos_compute_score = dnsmos.ComputeScore(primary_model_path, device_name)
logger.debug("All models loaded")
supported_languages = cfg["language"]["supported"]
multilingual_flag = cfg["language"]["multilingual"]
logger.debug(f"supported languages multilingual {supported_languages}")
logger.debug(f"using multilingual asr {multilingual_flag}")
input_folder_path = cfg["entrypoint"]["input_folder_path"]
if not os.path.exists(input_folder_path):
raise FileNotFoundError(f"input_folder_path: {input_folder_path} not found")
audio_paths = get_audio_files(input_folder_path) # Get all audio files
logger.debug(f"Scanning {len(audio_paths)} audio files in {input_folder_path}")
for path in audio_paths:
main_process(path)