# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F

from modules.distributions.distributions import DiagonalGaussianDistribution


def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)


def Normalize(in_channels):
    return torch.nn.GroupNorm(
        num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
    )


class Upsample2d(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv2d(
                in_channels, in_channels, kernel_size=3, stride=1, padding=1
            )

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x


class Upsample1d(Upsample2d):
    def __init__(self, in_channels, with_conv):
        super().__init__(in_channels, with_conv)
        if self.with_conv:
            self.conv = torch.nn.Conv1d(
                in_channels, in_channels, kernel_size=3, stride=1, padding=1
            )


class Downsample2d(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(
                in_channels, in_channels, kernel_size=3, stride=2, padding=0
            )
            self.pad = (0, 1, 0, 1)
        else:
            self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        if self.with_conv:  # bp: check self.avgpool and self.pad
            x = torch.nn.functional.pad(x, self.pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = self.avg_pool(x)
        return x


class Downsample1d(Downsample2d):
    def __init__(self, in_channels, with_conv):
        super().__init__(in_channels, with_conv)
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            # TODO: can we replace it just with conv2d with padding 1?
            self.conv = torch.nn.Conv1d(
                in_channels, in_channels, kernel_size=3, stride=2, padding=0
            )
            self.pad = (1, 1)
        else:
            self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2)


class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )

        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(
                    in_channels, out_channels, kernel_size=3, stride=1, padding=1
                )
            else:
                self.nin_shortcut = torch.nn.Conv2d(
                    in_channels, out_channels, kernel_size=1, stride=1, padding=0
                )

    def forward(self, x):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class ResnetBlock1d(ResnetBlock):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout,
        temb_channels=512
    ):
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            conv_shortcut=conv_shortcut,
            dropout=dropout,
        )

        self.conv1 = torch.nn.Conv1d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        self.conv2 = torch.nn.Conv1d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv1d(
                    in_channels, out_channels, kernel_size=3, stride=1, padding=1
                )
            else:
                self.nin_shortcut = torch.nn.Conv1d(
                    in_channels, out_channels, kernel_size=1, stride=1, padding=0
                )


class Encoder2d(nn.Module):
    def __init__(
        self,
        *,
        ch,
        ch_mult=(1, 2, 4, 8),
        num_res_blocks,
        dropout=0.0,
        resamp_with_conv=True,
        in_channels,
        z_channels,
        double_z=True,
        **ignore_kwargs
    ):
        super().__init__()
        self.ch = ch
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_channels

        # downsampling
        self.conv_in = torch.nn.Conv2d(
            in_channels, self.ch, kernel_size=3, stride=1, padding=1
        )

        in_ch_mult = (1,) + tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, dropout=dropout
                    )
                )
                block_in = block_out
            down = nn.Module()
            down.block = block
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample2d(block_in, resamp_with_conv)
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, dropout=dropout
        )
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, dropout=dropout
        )

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(
            block_in,
            2 * z_channels if double_z else z_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )

    def forward(self, x):
        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1])
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h)
        h = self.mid.block_2(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


# TODO: Encoder1d
class Encoder1d(Encoder2d): ...


class Decoder2d(nn.Module):
    def __init__(
        self,
        *,
        ch,
        out_ch,
        ch_mult=(1, 2, 4, 8),
        num_res_blocks,
        dropout=0.0,
        resamp_with_conv=True,
        in_channels,
        z_channels,
        give_pre_end=False,
        **ignorekwargs
    ):
        super().__init__()
        self.ch = ch
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,) + tuple(ch_mult)
        block_in = ch * ch_mult[self.num_resolutions - 1]
        # self.z_shape = (1,z_channels,curr_res,curr_res)
        # print("Working with z of shape {} = {} dimensions.".format(
        #     self.z_shape, np.prod(self.z_shape)))

        # z to block_in
        self.conv_in = torch.nn.Conv2d(
            z_channels, block_in, kernel_size=3, stride=1, padding=1
        )

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, dropout=dropout
        )
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, dropout=dropout
        )

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, dropout=dropout
                    )
                )
                block_in = block_out
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample2d(block_in, resamp_with_conv)
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(
            block_in, out_ch, kernel_size=3, stride=1, padding=1
        )

    def forward(self, z):
        self.last_z_shape = z.shape

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h)
        h = self.mid.block_2(h)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


# TODO: decoder1d
class Decoder1d(Decoder2d): ...


class AutoencoderKL(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.encoder = Encoder2d(
            ch=cfg.ch,
            ch_mult=cfg.ch_mult,
            num_res_blocks=cfg.num_res_blocks,
            in_channels=cfg.in_channels,
            z_channels=cfg.z_channels,
            double_z=cfg.double_z,
        )
        self.decoder = Decoder2d(
            ch=cfg.ch,
            ch_mult=cfg.ch_mult,
            num_res_blocks=cfg.num_res_blocks,
            out_ch=cfg.out_ch,
            z_channels=cfg.z_channels,
            in_channels=None,
        )
        assert self.cfg.double_z

        self.quant_conv = torch.nn.Conv2d(2 * cfg.z_channels, 2 * cfg.z_channels, 1)
        self.post_quant_conv = torch.nn.Conv2d(cfg.z_channels, cfg.z_channels, 1)
        self.embed_dim = cfg.z_channels

    def encode(self, x):
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

    def forward(self, input, sample_posterior=True):
        posterior = self.encode(input)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        dec = self.decode(z)
        return dec, posterior

    def get_last_layer(self):
        return self.decoder.conv_out.weight