marcelomoreno26's picture
Upload 3 files
9d54e27 verified
raw
history blame
4.06 kB
import torch
from transformers import (AutoModelForSequenceClassification, AutoModelForSeq2SeqLM,
AutoConfig, AutoModelForTokenClassification,
AutoTokenizer, pipeline)
from peft import PeftModel, PeftConfig
def load_sentiment_analyzer():
tokenizer = AutoTokenizer.from_pretrained("aliciiavs/sentiment-analysis-whatsapp2")
model = AutoModelForSequenceClassification.from_pretrained("aliciiavs/sentiment-analysis-whatsapp2")
return tokenizer, model
def load_summarizer():
config = PeftConfig.from_pretrained("marcelomoreno26/bart-large-samsum-adapter")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large")
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, "marcelomoreno26/bart-large-samsum-adapter", config=config)
model = model.merge_and_unload()
return tokenizer, model
def load_NER():
config = AutoConfig.from_pretrained("hannahisrael03/distilbert-base-uncased-finetuned-wikiann")
model = AutoModelForTokenClassification.from_pretrained("hannahisrael03/distilbert-base-uncased-finetuned-wikiann",config=config)
tokenizer = AutoTokenizer.from_pretrained("hannahisrael03/distilbert-base-uncased-finetuned-wikiann")
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
return pipe
def get_sentiment_analysis(text, tokenizer, model):
inputs = tokenizer(text, padding=True, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Get predicted probabilities and predicted label
probabilities = torch.softmax(outputs.logits, dim=1)
predicted_label = torch.argmax(probabilities, dim=1)
# Convert the predicted label tensor to a Python integer
predicted_label = predicted_label.item()
# Map predicted label index to sentiment label
label_dic = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
# Print the predicted sentiment label
return label_dic[predicted_label]
def generate_summary(text, tokenizer, model):
prefix = "summarize: "
encoded_input = tokenizer.encode_plus(prefix + text, return_tensors='pt', add_special_tokens=True)
input_ids = encoded_input['input_ids']
# Check if input_ids exceed the model's max length
max_length = 512
if input_ids.shape[1] > max_length:
# Split the input_ids into manageable segments
total_summary = []
for i in range(0, input_ids.shape[1], max_length - 50): # We use max_length - 50 to allow for some room for the model to generate context
segment_ids = input_ids[:, i:i + max_length]
output_ids = model.generate(segment_ids, max_length=150, num_beams=5, early_stopping=True)
segment_summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
total_summary.append(segment_summary)
# Concatenate all segment summaries
summary = ' '.join(total_summary)
else:
# Process as usual
output_ids = model.generate(input_ids, max_length=150, num_beams=5, early_stopping=True)
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return summary
def get_NER(text, pipe):
# Use pipeline to predict NER
results = pipe(text)
# Filter duplicates while retaining the highest score for each entity type and word combination
unique_entities = {}
for ent in results:
key = (ent['entity_group'], ent['word'])
if key not in unique_entities or unique_entities[key]['score'] < ent['score']:
unique_entities[key] = ent
# Prepare the output, sorted by the start position to maintain the order they appear in the text
filtered_results = sorted(unique_entities.values(), key=lambda x: x['start'])
# Format the results for a table display
formatted_results = [[ent['word'], ent['entity_group']] for ent in filtered_results]
return formatted_results