import gradio as gr from transformers import BlipForConditionalGeneration, AutoProcessor from PIL import Image import torch # Load model and processor processor = AutoProcessor.from_pretrained("blip-fine-tuned/") processor.tokenizer.padding_size = 'left' model = BlipForConditionalGeneration.from_pretrained("blip-fine-tuned/") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def predict(image): # Preprocess the image inputs = processor(images=image, return_tensors="pt").to(device) pixel_values = inputs.pixel_values # get predictions with torch.no_grad(): generated_ids = model.generate(pixel_values=pixel_values, max_length=100) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption # interface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text") interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs="text", title="BLIP Image Caption Generator", description="Upload an image or select a sample to generate a descriptive caption." # Add description here ) interface.launch()