import os import re from pathlib import Path import chromadb import gradio as gr from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain_community.vectorstores import Chroma from unidecode import unidecode list_llm = [ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl", ] list_llm_simple = [os.path.basename(llm) for llm in list_llm] def load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap): # Processing for one document only # loader = PyPDFLoader(file_path) # pages = loader.load() loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_vector_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb def initialize_llmchain( llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress() ): progress(0.1, desc="Initializing HF Hub...") if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True, ) else: llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) progress(0.6, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", return_messages=True ) # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3}) retriever = vector_db.as_retriever() progress(0.75, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain # Generate collection name for vector database # - Use filepath as input, ensuring unicode text def create_collection_name(filepath): collection_name = Path(filepath).stem # Extract filename without extension # Fix potential issues from naming convention collection_name = collection_name.replace(" ", "-") # Remove space collection_name = unidecode( collection_name ) # ASCII transliterations of Unicode text collection_name = re.sub( "[^A-Za-z0-9]+", "-", collection_name ) # Remove special characters collection_name = collection_name[:50] # Limit length to 50 characters # Minimum length of 3 characters if len(collection_name) < 3: collection_name = collection_name + "xyz" # Enforce start and end as alphanumeric character if not collection_name[0].isalnum(): collection_name = "A" + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + "Z" print("Filepath: ", filepath) print("Collection name: ", collection_name) return collection_name def initialize_database( list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress() ): list_file_path = [x.name for x in list_file_obj if x is not None] progress(0.1, desc="Creating collection name...") collection_name = create_collection_name(list_file_path[0]) progress(0.25, desc="Loading document...") doc_splits = load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_vector_db(doc_splits, collection_name) progress(0.9, desc="Done!") return vector_db, collection_name, "Complete!" def initialize_LLM( llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress() ): llm_name = list_llm[llm_option] print("llm_name: ", llm_name) qa_chain = initialize_llmchain( llm_name, llm_temperature, max_tokens, top_k, vector_db, progress ) return qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) # Generate response using QA chain response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] # Langchain sources are zero-based response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 # Append user message and response to chat history new_history = history + [(message, response_answer)] # return gr.update(value=""), new_history, response_sources[0], response_sources[1] return ( qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page, ) def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file_obj.name list_file_path.append(file_path) return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

Chat with your PDF

Ask any questions about your PDF documents

""" ) # gr.Markdown( # """Note: This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \ # This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.
# """ # ) with gr.Tab("Chatbot configuration"): gr.Markdown("1. Upload the PDF(s)") with gr.Row(): document = gr.Files( height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)", ) # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1) gr.Markdown("2. Configure the vector database") with gr.Row(): with gr.Row(): db_btn = gr.Radio( ["ChromaDB"], label="Vector database type", value="ChromaDB", type="index", info="Choose your vector database", ) with gr.Accordion( "Advanced options - Document text splitter", open=False ): with gr.Row(): slider_chunk_size = gr.Slider( minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True, ) with gr.Row(): slider_chunk_overlap = gr.Slider( minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True, ) with gr.Row(): db_btn = gr.Button("Generate vector database", size="sm") with gr.Row(): db_progress = gr.Textbox( label="Vector database initialization", value="0% Configure the DB" ) gr.Markdown("3. Configure the LLM model") with gr.Row(): with gr.Row(): llm_btn = gr.Radio( list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model", ) with gr.Accordion("Advanced options - LLM model", open=False): with gr.Row(): slider_temperature = gr.Slider( minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True, ) with gr.Row(): slider_maxtokens = gr.Slider( minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True, ) with gr.Row(): slider_topk = gr.Slider( minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True, ) with gr.Row(): qachain_btn = gr.Button( "Initialize Question Answering chain", size="sm" ) with gr.Row(): llm_progress = gr.Textbox( label="QA chain initialization", value="0% Configure the QA chain" ) with gr.Tab("Chatbot"): chatbot = gr.Chatbot(height=300) with gr.Accordion("Advanced - Document references", open=False): with gr.Row(): doc_source1 = gr.Textbox( label="Reference 1", lines=2, container=True, scale=20 ) source1_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source2 = gr.Textbox( label="Reference 2", lines=2, container=True, scale=20 ) source2_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source3 = gr.Textbox( label="Reference 3", lines=2, container=True, scale=20 ) source3_page = gr.Number(label="Page", scale=1) with gr.Row(): msg = gr.Textbox( placeholder="Type message (e.g. 'What is this document about?')", container=True, ) with gr.Row(): submit_btn = gr.Button("Submit message") clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") # Preprocessing events # upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document]) db_btn.click( initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress], ) qachain_btn.click( initialize_LLM, inputs=[ llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, ], outputs=[qa_chain, llm_progress], ).then( lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[ chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, ], queue=False, ) # Chatbot events msg.submit( conversation, inputs=[qa_chain, msg, chatbot], outputs=[ qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, ], queue=False, ) submit_btn.click( conversation, inputs=[qa_chain, msg, chatbot], outputs=[ qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, ], queue=False, ) clear_btn.click( lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[ chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page, ], queue=False, ) demo.queue().launch(debug=True) if __name__ == "__main__": demo()