import os import re from pathlib import Path import chromadb import gradio as gr from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain_community.vectorstores import Chroma from unidecode import unidecode list_llm = [ "mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl", ] list_llm_simple = [os.path.basename(llm) for llm in list_llm] def load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap): # Processing for one document only # loader = PyPDFLoader(file_path) # pages = loader.load() loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_vector_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb def initialize_llmchain( llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress() ): progress(0.1, desc="Initializing HF Hub...") if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, load_in_8bit=True, ) else: llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) progress(0.6, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", return_messages=True ) # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3}) retriever = vector_db.as_retriever() progress(0.75, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain # Generate collection name for vector database # - Use filepath as input, ensuring unicode text def create_collection_name(filepath): collection_name = Path(filepath).stem # Extract filename without extension # Fix potential issues from naming convention collection_name = collection_name.replace(" ", "-") # Remove space collection_name = unidecode( collection_name ) # ASCII transliterations of Unicode text collection_name = re.sub( "[^A-Za-z0-9]+", "-", collection_name ) # Remove special characters collection_name = collection_name[:50] # Limit length to 50 characters # Minimum length of 3 characters if len(collection_name) < 3: collection_name = collection_name + "xyz" # Enforce start and end as alphanumeric character if not collection_name[0].isalnum(): collection_name = "A" + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + "Z" print("Filepath: ", filepath) print("Collection name: ", collection_name) return collection_name def initialize_database( list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress() ): list_file_path = [x.name for x in list_file_obj if x is not None] progress(0.1, desc="Creating collection name...") collection_name = create_collection_name(list_file_path[0]) progress(0.25, desc="Loading document...") doc_splits = load_doc_and_create_splits(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_vector_db(doc_splits, collection_name) progress(0.9, desc="Done!") return vector_db, collection_name, "Complete!" def initialize_LLM( llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress() ): llm_name = list_llm[llm_option] print("llm_name: ", llm_name) qa_chain = initialize_llmchain( llm_name, llm_temperature, max_tokens, top_k, vector_db, progress ) return qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) # Generate response using QA chain response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] # Langchain sources are zero-based response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 # Append user message and response to chat history new_history = history + [(message, response_answer)] # return gr.update(value=""), new_history, response_sources[0], response_sources[1] return ( qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page, ) def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file_obj.name list_file_path.append(file_path) return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """