File size: 5,619 Bytes
0edd243
 
 
 
 
 
 
 
 
 
 
9b1f236
 
 
0edd243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406caf
0edd243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406caf
0edd243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import yt_dlp
import os
import time
import torch
import transformers
import clip
import numpy as np
import cv2
import random
from PIL import Image
from multilingual_clip import pt_multilingual_clip



class SearchVideo:

    def __init__(
            self,
            clip_model: str,
            text_model: str,
            tokenizer,
            compose,
            ) -> None:
        """ 
        clip_model: CLIP model to use for image embeddings
        text_model: text encoder model
        """
        self.text_model = text_model
        self.tokenizer = tokenizer
        self.clip_model = clip_model
        self.compose = compose
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        

    def __call__(self, video: str, text: str) -> list:
        torch.cuda.empty_cache()
        img_list = []
        text_list = []
        frames = self.video2frames_ffmpeg(video)
    

        img_embs = self.get_img_embs(frames)
        txt_emb = self.get_txt_embs(text)
        # txt_emb = [[t]*len(frames) for t in txt_emb]
        txt_emb = txt_emb*len(frames)

        logits_per_image = self.compare_embeddings(img_embs, txt_emb)
        logits_per_image = [logit.numpy()[0] for logit in logits_per_image]
        ind = np.argmax(logits_per_image)
        seg_path = self.extract_seg(video, ind)
        return ind, seg_path, frames[ind]


    def extract_seg(self, video:str, start:int):
        start = start if start > 5 else start-5
        start = time.strftime('%H:%M:%S', time.gmtime(start))
        cmd = f'ffmpeg -ss {start} -i "{video}" -t 00:00:02 -vcodec copy -acodec copy -y segment_{start}.mp4'
        os.system(cmd)
        return f'segment_{start}.mp4'

    def video2frames_ffmpeg(self, video: str) -> list:
          frames_dir = 'frames'
          if not os.path.exists(frames_dir):
            os.makedirs(frames_dir)

          select = "select='if(eq(n\,0),1,floor(t)-floor(prev_selected_t))'"
          os.system(f'ffmpeg -i {video} -r 1 {frames_dir}/output-%04d.jpg')

          images = [Image.open(f'{frames_dir}/{f}') for f in sorted(os.listdir(frames_dir))]
          os.system(f'rm -rf {frames_dir}')
          return images

    def video2frames(self, video: str) -> list:
          cap = cv2.VideoCapture(video)
          num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
          images = []
          frames_sec = [i for i in range(0, num_frames, 24*1)]
          has_frames,image = cap.read()
          frame_count = 0
          while has_frames:
              has_frames,image = cap.read()
              frame_count += 1
              if has_frames:
                  if frame_count in frames_sec:
                    image = Image.fromarray(image)
                    images.append(image)
          return images

    def get_img_embs(self, img_list: list) -> list:
        """
        takes list of image and calculates clip embeddings with model specified by clip_model
        """
        img_input = torch.stack([self.compose(img).to(self.device)
                                for img in img_list])
        with torch.no_grad():
            image_embs = self.clip_model.encode_image(img_input).float().cpu()
            return image_embs

    def get_txt_embs(self, text: str) -> torch.Tensor:
        "calculates clip emebdding for the text "
        with torch.no_grad():
            return self.text_model(text, self.tokenizer)

    def compare_embeddings(self, img_embs, txt_embs):
        # normalized features
        image_features = img_embs / img_embs.norm(dim=-1, keepdim=True)
        text_features = txt_embs / txt_embs.norm(dim=-1, keepdim=True)

        # cosine similarity as logits
        logits_per_image = []
        for image_feature in image_features:
          logits_per_image.append(image_feature @ text_features.t())

        return logits_per_image

def download_yt_video(url):
  ydl_opts = {
        'quiet': True,
        "outtmpl": "%(id)s.%(ext)s", 
        'format': 'bv*[height<=360][ext=mp4]+ba/b[height<=360] / wv*+ba/w'
    }

  with yt_dlp.YoutubeDL(ydl_opts) as ydl:
    ydl.download([url])
    return url.split('/')[-1].replace('watch?v=', '')+'.mp4'


clip_model='ViT-B/32'
text_model='M-CLIP/XLM-Roberta-Large-Vit-B-32'
clip_model, compose = clip.load(clip_model)
tokenizer = transformers.AutoTokenizer.from_pretrained(text_model)
text_model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(text_model)

def search_video(video_url, text, video=None):
    search = SearchVideo(
        clip_model=clip_model,
        text_model=text_model,
        tokenizer=tokenizer,
        compose=compose
    )
    if video !=None:
      video_url = None
    if video_url:
        video = download_yt_video(video_url)
    ind, seg_path, img = search(video, text)
    start = time.strftime('%H:%M:%S', time.gmtime(ind))
    return f'"{text}" found at {start}',  seg_path

title = 'πŸ”ŽπŸŽžοΈπŸš€ Search inside a video'
description = '''Just enter a search query, a video URL or upload your video and get a 2-sec fragment from the video which is visually closest to you query.'''

examples = [["https://www.youtube.com/watch?v=M93w3TjzVUE", "A dog"]]

iface = gr.Interface(
    search_video, 
    inputs=[gr.Textbox(value="https://www.youtube.com/watch?v=M93w3TjzVUE", label='Video URL'), gr.Textbox(value="a dog", label='Text query'), gr.Video()], 
    outputs=[gr.Textbox(label="Output"), gr.Video(label="Video segment")], 
    allow_flagging="never",
    title=title,
    description=description,
    examples=examples
    )

if __name__ == "__main__":
  iface.launch(show_error=True)