import contextlib
import gc
import os
import re
import requests
import gc
import sys

from encodec import EncodecModel
import funcy
import logging
import numpy as np
from scipy.special import softmax
import torch
import torch.nn.functional as F
import tqdm
from transformers import BertTokenizer
from huggingface_hub import hf_hub_download, hf_hub_url

from .model import GPTConfig, GPT
from .model_fine import FineGPT, FineGPTConfig
from .settings import initenv

initenv(sys.argv)
global_force_cpu = os.environ.get("BARK_FORCE_CPU", False)
if (
    global_force_cpu != True and
    torch.cuda.is_available() and
    hasattr(torch.cuda, "amp") and
    hasattr(torch.cuda.amp, "autocast") and
    hasattr(torch.cuda, "is_bf16_supported") and
    torch.cuda.is_bf16_supported()
):
    autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:
    @contextlib.contextmanager
    def autocast():
        yield


# hold models in global scope to lazy load
global models
models = {}

global models_devices
models_devices = {}


CONTEXT_WINDOW_SIZE = 1024

SEMANTIC_RATE_HZ = 49.9
SEMANTIC_VOCAB_SIZE = 10_000

CODEBOOK_SIZE = 1024
N_COARSE_CODEBOOKS = 2
N_FINE_CODEBOOKS = 8
COARSE_RATE_HZ = 75

SAMPLE_RATE = 24_000


SUPPORTED_LANGS = [
    ("English", "en"),
    ("German", "de"),
    ("Spanish", "es"),
    ("French", "fr"),
    ("Hindi", "hi"),
    ("Italian", "it"),
    ("Japanese", "ja"),
    ("Korean", "ko"),
    ("Polish", "pl"),
    ("Portuguese", "pt"),
    ("Russian", "ru"),
    ("Turkish", "tr"),
    ("Chinese", "zh"),
]

ALLOWED_PROMPTS = {"announcer"}
for _, lang in SUPPORTED_LANGS:
    for prefix in ("", f"v2{os.path.sep}"):
        for n in range(10):
            ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")


logger = logging.getLogger(__name__)


CUR_PATH = os.path.dirname(os.path.abspath(__file__))


#default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
#CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
#CACHE_DIR = os.path.join(os.getcwd(), "models"
CACHE_DIR = "./models"


def _cast_bool_env_var(s):
    return s.lower() in ('true', '1', 't')

USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False"))
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False"))
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False"))

REMOTE_MODEL_PATHS = {
    "text_small": {
        "repo_id": "suno/bark",
        "file_name": "text.pt",
    },
    "coarse_small": {
        "repo_id": "suno/bark",
        "file_name": "coarse.pt",
    },
    "fine_small": {
        "repo_id": "suno/bark",
        "file_name": "fine.pt",
    },
    "text": {
        "repo_id": "suno/bark",
        "file_name": "text_2.pt",
    },
    "coarse": {
        "repo_id": "suno/bark",
        "file_name": "coarse_2.pt",
    },
    "fine": {
        "repo_id": "suno/bark",
        "file_name": "fine_2.pt",
    },
}


if not hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch.cuda.is_available():
    logger.warning(
        "torch version does not support flash attention. You will get faster" +
        " inference speed by upgrade torch to newest nightly version."
    )


def grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS:
        device = "mps"
    else:
        device = "cpu"
    return device


def _get_ckpt_path(model_type, use_small=False):
    key = model_type
    if use_small or USE_SMALL_MODELS:
        key += "_small"
    return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"])

"""
def _download(from_hf_path, file_name, destfilename):
    os.makedirs(CACHE_DIR, exist_ok=True)
    hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR, local_dir_use_symlinks=False)
    # Bug in original repo? Downloaded name differs from expected...
    if not os.path.exists(destfilename):
        localname = os.path.join(CACHE_DIR, file_name)
        os.rename(localname, destfilename)
"""
def _download(from_hf_path, file_name):
    os.makedirs(CACHE_DIR, exist_ok=True)
    hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR)


class InferenceContext:
    def __init__(self, benchmark=False):
        # we can't expect inputs to be the same length, so disable benchmarking by default
        self._chosen_cudnn_benchmark = benchmark
        self._cudnn_benchmark = None

    def __enter__(self):
        self._cudnn_benchmark = torch.backends.cudnn.benchmark
        torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark

    def __exit__(self, exc_type, exc_value, exc_traceback):
        torch.backends.cudnn.benchmark = self._cudnn_benchmark


if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True


@contextlib.contextmanager
def _inference_mode():
    with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
        yield


def _clear_cuda_cache():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()


def clean_models(model_key=None):
    global models
    model_keys = [model_key] if model_key is not None else models.keys()
    for k in model_keys:
        if k in models:
            del models[k]
    _clear_cuda_cache()
    gc.collect()


def _load_model(ckpt_path, device, use_small=False, model_type="text"):
    if model_type == "text":
        ConfigClass = GPTConfig
        ModelClass = GPT
    elif model_type == "coarse":
        ConfigClass = GPTConfig
        ModelClass = GPT
    elif model_type == "fine":
        ConfigClass = FineGPTConfig
        ModelClass = FineGPT
    else:
        raise NotImplementedError()

    # Force-remove Models to allow running on >12Gb GPU
    # CF: Probably not needed anymore
    #global models
    #models.clear()
    #gc.collect()
    #torch.cuda.empty_cache()
    # to here...

    model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type
    model_info = REMOTE_MODEL_PATHS[model_key]
    if not os.path.exists(ckpt_path):
        logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
        ## added next two lines to make it super clear which model is being downloaded
        remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"])
        print(f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}")
        _download(model_info["repo_id"], model_info["file_name"])
        # add next line to make it super clear which model is being loaded
    print(f"Loading {model_key} model from {ckpt_path} to {device}") # added
    checkpoint = torch.load(ckpt_path, map_location=device)
    # this is a hack
    model_args = checkpoint["model_args"]
    if "input_vocab_size" not in model_args:
        model_args["input_vocab_size"] = model_args["vocab_size"]
        model_args["output_vocab_size"] = model_args["vocab_size"]
        del model_args["vocab_size"]
    gptconf = ConfigClass(**checkpoint["model_args"])
    model = ModelClass(gptconf)
    state_dict = checkpoint["model"]
    # fixup checkpoint
    unwanted_prefix = "_orig_mod."
    for k, v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
    extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
    extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")])
    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
    missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")])
    if len(extra_keys) != 0:
        raise ValueError(f"extra keys found: {extra_keys}")
    if len(missing_keys) != 0:
        raise ValueError(f"missing keys: {missing_keys}")
    model.load_state_dict(state_dict, strict=False)
    n_params = model.get_num_params()
    val_loss = checkpoint["best_val_loss"].item()
    logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
    model.eval()
    model.to(device)
    del checkpoint, state_dict
    _clear_cuda_cache()
    if model_type == "text":
        tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
        return {
            "model": model,
            "tokenizer": tokenizer,
        }
    return model


def _load_codec_model(device):
    model = EncodecModel.encodec_model_24khz()
    model.set_target_bandwidth(6.0)
    model.eval()
    model.to(device)
    _clear_cuda_cache()
    return model


def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"):
    _load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small)
    if model_type not in ("text", "coarse", "fine"):
        raise NotImplementedError()
    global models
    global models_devices
    device = grab_best_device(use_gpu=use_gpu)
    model_key = f"{model_type}"
    if OFFLOAD_CPU:
        models_devices[model_key] = device
        device = "cpu"
    if model_key not in models or force_reload:
        ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
        clean_models(model_key=model_key)
        model = _load_model_f(ckpt_path, device)
        models[model_key] = model
    if model_type == "text":
        models[model_key]["model"].to(device)
    else:
        models[model_key].to(device)
    return models[model_key]


def load_codec_model(use_gpu=True, force_reload=False):
    global models
    global models_devices
    device = grab_best_device(use_gpu=use_gpu)
    if device == "mps":
        # encodec doesn't support mps
        device = "cpu"
    model_key = "codec"
    if OFFLOAD_CPU:
        models_devices[model_key] = device
        device = "cpu"
    if model_key not in models or force_reload:
        clean_models(model_key=model_key)
        model = _load_codec_model(device)
        models[model_key] = model
    models[model_key].to(device)
    return models[model_key]


def preload_models(
    text_use_gpu=True,
    text_use_small=False,
    coarse_use_gpu=True,
    coarse_use_small=False,
    fine_use_gpu=True,
    fine_use_small=False,
    codec_use_gpu=True,
    force_reload=False
):
    """Load all the necessary models for the pipeline."""
    if grab_best_device() == "cpu" and (
        text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu
    ):
        logger.warning("No GPU being used. Careful, inference might be very slow!")
    _ = load_model(
        model_type="text", use_gpu=text_use_gpu, use_small=text_use_small, force_reload=force_reload
    )
    _ = load_model(
        model_type="coarse",
        use_gpu=coarse_use_gpu,
        use_small=coarse_use_small,
        force_reload=force_reload,
    )
    _ = load_model(
        model_type="fine", use_gpu=fine_use_gpu, use_small=fine_use_small, force_reload=force_reload
    )
    _ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)


####
# Generation Functionality
####


def _tokenize(tokenizer, text):
    return tokenizer.encode(text, add_special_tokens=False)


def _detokenize(tokenizer, enc_text):
    return tokenizer.decode(enc_text)


def _normalize_whitespace(text):
    return re.sub(r"\s+", " ", text).strip()


TEXT_ENCODING_OFFSET = 10_048
SEMANTIC_PAD_TOKEN = 10_000
TEXT_PAD_TOKEN = 129_595
SEMANTIC_INFER_TOKEN = 129_599


def _load_history_prompt(history_prompt_input):
    if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"):
        history_prompt = np.load(history_prompt_input)
    elif isinstance(history_prompt_input, str):
        # make sure this works on non-ubuntu
        history_prompt_input = os.path.join(*history_prompt_input.split("/"))
#        if history_prompt_input not in ALLOWED_PROMPTS:
#            raise ValueError("history prompt not found")
        history_prompt = np.load(
            os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz")
        )
    elif isinstance(history_prompt_input, dict):
        assert("semantic_prompt" in history_prompt_input)
        assert("coarse_prompt" in history_prompt_input)
        assert("fine_prompt" in history_prompt_input)
        history_prompt = history_prompt_input
    else:
        raise ValueError("history prompt format unrecognized")
    return history_prompt


def generate_text_semantic(
    text,
    history_prompt=None,
    temp=0.7,
    top_k=None,
    top_p=None,
    silent=False,
    min_eos_p=0.2,
    max_gen_duration_s=None,
    allow_early_stop=True,
    use_kv_caching=False,
):
    """Generate semantic tokens from text."""
    assert isinstance(text, str)
    text = _normalize_whitespace(text)
    assert len(text.strip()) > 0
    if history_prompt is not None:
        history_prompt = _load_history_prompt(history_prompt)
        semantic_history = history_prompt["semantic_prompt"]
        assert (
            isinstance(semantic_history, np.ndarray)
            and len(semantic_history.shape) == 1
            and len(semantic_history) > 0
            and semantic_history.min() >= 0
            and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
        )
    else:
        semantic_history = None
    # load models if not yet exist
    global models
    global models_devices
    if "text" not in models:
        preload_models()
    model_container = models["text"]
    model = model_container["model"]
    tokenizer = model_container["tokenizer"]
    encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
    if OFFLOAD_CPU:
        model.to(models_devices["text"])
    device = next(model.parameters()).device
    if len(encoded_text) > 256:
        p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
        logger.warning(f"warning, text too long, lopping of last {p}%")
        encoded_text = encoded_text[:256]
    encoded_text = np.pad(
        encoded_text,
        (0, 256 - len(encoded_text)),
        constant_values=TEXT_PAD_TOKEN,
        mode="constant",
    )
    if semantic_history is not None:
        semantic_history = semantic_history.astype(np.int64)
        # lop off if history is too long, pad if needed
        semantic_history = semantic_history[-256:]
        semantic_history = np.pad(
            semantic_history,
            (0, 256 - len(semantic_history)),
            constant_values=SEMANTIC_PAD_TOKEN,
            mode="constant",
        )
    else:
        semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
    x = torch.from_numpy(
        np.hstack([
            encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])
        ]).astype(np.int64)
    )[None]
    assert x.shape[1] == 256 + 256 + 1
    with _inference_mode():
        x = x.to(device)
        n_tot_steps = 768
        # custom tqdm updates since we don't know when eos will occur
        pbar = tqdm.tqdm(disable=silent, total=100)
        pbar_state = 0
        tot_generated_duration_s = 0
        kv_cache = None
        for n in range(n_tot_steps):
            if use_kv_caching and kv_cache is not None:
                x_input = x[:, [-1]]
            else:
                x_input = x
            logits, kv_cache = model(
                x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
            )
            relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
            if allow_early_stop:
                relevant_logits = torch.hstack(
                    (relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]])  # eos
                )
            if top_p is not None:
                # faster to convert to numpy
                original_device = relevant_logits.device
                relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
                sorted_indices = np.argsort(relevant_logits)[::-1]
                sorted_logits = relevant_logits[sorted_indices]
                cumulative_probs = np.cumsum(softmax(sorted_logits))
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
                sorted_indices_to_remove[0] = False
                relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
                relevant_logits = torch.from_numpy(relevant_logits)
                relevant_logits = relevant_logits.to(original_device)
            if top_k is not None:
                v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
                relevant_logits[relevant_logits < v[-1]] = -float("Inf")
            probs = F.softmax(relevant_logits / temp, dim=-1)
            # multinomial bugged on mps: shuttle to cpu if necessary
            inf_device = probs.device
            if probs.device.type == "mps":
                probs = probs.to("cpu")
            item_next = torch.multinomial(probs, num_samples=1)
            probs = probs.to(inf_device)
            item_next = item_next.to(inf_device)
            if allow_early_stop and (
                item_next == SEMANTIC_VOCAB_SIZE
                or (min_eos_p is not None and probs[-1] >= min_eos_p)
            ):
                # eos found, so break
                pbar.update(100 - pbar_state)
                break
            x = torch.cat((x, item_next[None]), dim=1)
            tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
            if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
                pbar.update(100 - pbar_state)
                break
            if n == n_tot_steps - 1:
                pbar.update(100 - pbar_state)
                break
            del logits, relevant_logits, probs, item_next
            req_pbar_state = np.min([100, int(round(100 * n / n_tot_steps))])
            if req_pbar_state > pbar_state:
                pbar.update(req_pbar_state - pbar_state)
            pbar_state = req_pbar_state
        pbar.close()
        out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
    if OFFLOAD_CPU:
        model.to("cpu")
    assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
    _clear_cuda_cache()
    return out


def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE):
    assert len(arr.shape) == 2
    arr = arr.copy()
    if offset_size is not None:
        for n in range(1, arr.shape[0]):
            arr[n, :] += offset_size * n
    flat_arr = arr.ravel("F")
    return flat_arr


COARSE_SEMANTIC_PAD_TOKEN = 12_048
COARSE_INFER_TOKEN = 12_050


def generate_coarse(
    x_semantic,
    history_prompt=None,
    temp=0.7,
    top_k=None,
    top_p=None,
    silent=False,
    max_coarse_history=630,  # min 60 (faster), max 630 (more context)
    sliding_window_len=60,
    use_kv_caching=False,
):
    """Generate coarse audio codes from semantic tokens."""
# CF: Uncommented because it breaks swap voice more than once
#    assert (
#        isinstance(x_semantic, np.ndarray)
#        and len(x_semantic.shape) == 1
#        and len(x_semantic) > 0
#        and x_semantic.min() >= 0
#        and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
#    )
    assert 60 <= max_coarse_history <= 630
    assert max_coarse_history + sliding_window_len <= 1024 - 256
    semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
    max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
    if history_prompt is not None:
        history_prompt = _load_history_prompt(history_prompt)
        x_semantic_history = history_prompt["semantic_prompt"]
        x_coarse_history = history_prompt["coarse_prompt"]
        assert (
            isinstance(x_semantic_history, np.ndarray)
            and len(x_semantic_history.shape) == 1
            and len(x_semantic_history) > 0
            and x_semantic_history.min() >= 0
            and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
            and isinstance(x_coarse_history, np.ndarray)
            and len(x_coarse_history.shape) == 2
            and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
            and x_coarse_history.shape[-1] >= 0
            and x_coarse_history.min() >= 0
            and x_coarse_history.max() <= CODEBOOK_SIZE - 1
            #and (
            #    round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
            #    == round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
            #)
        )
        x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
        # trim histories correctly
        n_semantic_hist_provided = np.min(
            [
                max_semantic_history,
                len(x_semantic_history) - len(x_semantic_history) % 2,
                int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
            ]
        )
        n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
        x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
        x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
        # TODO: bit of a hack for time alignment (sounds better)
        x_coarse_history = x_coarse_history[:-2]
    else:
        x_semantic_history = np.array([], dtype=np.int32)
        x_coarse_history = np.array([], dtype=np.int32)
    # load models if not yet exist
    global models
    global models_devices
    if "coarse" not in models:
        preload_models()
    model = models["coarse"]
    if OFFLOAD_CPU:
        model.to(models_devices["coarse"])
    device = next(model.parameters()).device
    # start loop
    n_steps = int(
        round(
            np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
            * N_COARSE_CODEBOOKS
        )
    )
    assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
    x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
    x_coarse = x_coarse_history.astype(np.int32)
    base_semantic_idx = len(x_semantic_history)
    with _inference_mode():
        x_semantic_in = torch.from_numpy(x_semantic)[None].to(device)
        x_coarse_in = torch.from_numpy(x_coarse)[None].to(device)
        n_window_steps = int(np.ceil(n_steps / sliding_window_len))
        n_step = 0
        for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
            semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
            # pad from right side
            x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
            x_in = x_in[:, :256]
            x_in = F.pad(
                x_in,
                (0, 256 - x_in.shape[-1]),
                "constant",
                COARSE_SEMANTIC_PAD_TOKEN,
            )
            x_in = torch.hstack(
                [
                    x_in,
                    torch.tensor([COARSE_INFER_TOKEN])[None].to(device),
                    x_coarse_in[:, -max_coarse_history:],
                ]
            )
            kv_cache = None
            for _ in range(sliding_window_len):
                if n_step >= n_steps:
                    continue
                is_major_step = n_step % N_COARSE_CODEBOOKS == 0

                if use_kv_caching and kv_cache is not None:
                    x_input = x_in[:, [-1]]
                else:
                    x_input = x_in

                logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
                logit_start_idx = (
                    SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
                )
                logit_end_idx = (
                    SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
                )
                relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
                if top_p is not None:
                    # faster to convert to numpy
                    original_device = relevant_logits.device
                    relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
                    sorted_indices = np.argsort(relevant_logits)[::-1]
                    sorted_logits = relevant_logits[sorted_indices]
                    cumulative_probs = np.cumsum(softmax(sorted_logits))
                    sorted_indices_to_remove = cumulative_probs > top_p
                    sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
                    sorted_indices_to_remove[0] = False
                    relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
                    relevant_logits = torch.from_numpy(relevant_logits)
                    relevant_logits = relevant_logits.to(original_device)
                if top_k is not None:
                    v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
                    relevant_logits[relevant_logits < v[-1]] = -float("Inf")
                probs = F.softmax(relevant_logits / temp, dim=-1)
                # multinomial bugged on mps: shuttle to cpu if necessary
                inf_device = probs.device
                if probs.device.type == "mps":
                    probs = probs.to("cpu")
                item_next = torch.multinomial(probs, num_samples=1)
                probs = probs.to(inf_device)
                item_next = item_next.to(inf_device)
                item_next += logit_start_idx
                x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
                x_in = torch.cat((x_in, item_next[None]), dim=1)
                del logits, relevant_logits, probs, item_next
                n_step += 1
            del x_in
        del x_semantic_in
    if OFFLOAD_CPU:
        model.to("cpu")
    gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
    del x_coarse_in
    assert len(gen_coarse_arr) == n_steps
    gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
    for n in range(1, N_COARSE_CODEBOOKS):
        gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
    _clear_cuda_cache()
    return gen_coarse_audio_arr


def generate_fine(
    x_coarse_gen,
    history_prompt=None,
    temp=0.5,
    silent=True,
):
    """Generate full audio codes from coarse audio codes."""
    assert (
        isinstance(x_coarse_gen, np.ndarray)
        and len(x_coarse_gen.shape) == 2
        and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1
        and x_coarse_gen.shape[1] > 0
        and x_coarse_gen.min() >= 0
        and x_coarse_gen.max() <= CODEBOOK_SIZE - 1
    )
    if history_prompt is not None:
        history_prompt = _load_history_prompt(history_prompt)
        x_fine_history = history_prompt["fine_prompt"]
        assert (
            isinstance(x_fine_history, np.ndarray)
            and len(x_fine_history.shape) == 2
            and x_fine_history.shape[0] == N_FINE_CODEBOOKS
            and x_fine_history.shape[1] >= 0
            and x_fine_history.min() >= 0
            and x_fine_history.max() <= CODEBOOK_SIZE - 1
        )
    else:
        x_fine_history = None
    n_coarse = x_coarse_gen.shape[0]
    # load models if not yet exist
    global models
    global models_devices
    if "fine" not in models:
        preload_models()
    model = models["fine"]
    if OFFLOAD_CPU:
        model.to(models_devices["fine"])
    device = next(model.parameters()).device
    # make input arr
    in_arr = np.vstack(
        [
            x_coarse_gen,
            np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
            + CODEBOOK_SIZE,  # padding
        ]
    ).astype(np.int32)
    # prepend history if available (max 512)
    if x_fine_history is not None:
        x_fine_history = x_fine_history.astype(np.int32)
        in_arr = np.hstack(
            [
                x_fine_history[:, -512:].astype(np.int32),
                in_arr,
            ]
        )
        n_history = x_fine_history[:, -512:].shape[1]
    else:
        n_history = 0
    n_remove_from_end = 0
    # need to pad if too short (since non-causal model)
    if in_arr.shape[1] < 1024:
        n_remove_from_end = 1024 - in_arr.shape[1]
        in_arr = np.hstack(
            [
                in_arr,
                np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE,
            ]
        )
    # we can be lazy about fractional loop and just keep overwriting codebooks
    n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
    with _inference_mode():
        in_arr = torch.tensor(in_arr.T).to(device)
        for n in tqdm.tqdm(range(n_loops), disable=silent):
            start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
            start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
            rel_start_fill_idx = start_fill_idx - start_idx
            in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
            for nn in range(n_coarse, N_FINE_CODEBOOKS):
                logits = model(nn, in_buffer)
                if temp is None:
                    relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE]
                    codebook_preds = torch.argmax(relevant_logits, -1)
                else:
                    relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp
                    probs = F.softmax(relevant_logits, dim=-1)
                    # multinomial bugged on mps: shuttle to cpu if necessary
                    inf_device = probs.device
                    if probs.device.type == "mps":
                        probs = probs.to("cpu")
                    codebook_preds = torch.hstack(
                        [
                            torch.multinomial(probs[nnn], num_samples=1).to(inf_device)
                            for nnn in range(rel_start_fill_idx, 1024)
                        ]
                    )
                in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
                del logits, codebook_preds
            # transfer over info into model_in and convert to numpy
            for nn in range(n_coarse, N_FINE_CODEBOOKS):
                in_arr[
                    start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn
                ] = in_buffer[0, rel_start_fill_idx:, nn]
            del in_buffer
        gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
        del in_arr
    if OFFLOAD_CPU:
        model.to("cpu")
    gen_fine_arr = gen_fine_arr[:, n_history:]
    if n_remove_from_end > 0:
        gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
    assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
    _clear_cuda_cache()
    return gen_fine_arr


def codec_decode(fine_tokens):
    """Turn quantized audio codes into audio array using encodec."""
    # load models if not yet exist
    global models
    global models_devices
    if "codec" not in models:
        preload_models()
    model = models["codec"]
    if OFFLOAD_CPU:
        model.to(models_devices["codec"])
    device = next(model.parameters()).device
    arr = torch.from_numpy(fine_tokens)[None]
    arr = arr.to(device)
    arr = arr.transpose(0, 1)
    emb = model.quantizer.decode(arr)
    out = model.decoder(emb)
    audio_arr = out.detach().cpu().numpy().squeeze()
    del arr, emb, out
    if OFFLOAD_CPU:
        model.to("cpu")
    return audio_arr