File size: 737 Bytes
11fa3a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
def train():
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores.faiss import FAISS
documents = CSVLoader(file_path="train/posts.csv").load()
# Split document in chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
docs = text_splitter.split_documents(documents=documents)
embeddings = OpenAIEmbeddings()
# Create vectors
vectorstore = FAISS.from_documents(docs, embeddings)
# Persist the vectors locally on disk
vectorstore.save_local("_rise_product_db");
return {"trained":"success"} |