|
from langchain_openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores.faiss import FAISS |
|
from langchain.chains import RetrievalQA |
|
from langchain_openai import OpenAI |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv(); |
|
|
|
|
|
|
|
question="I would like to be a teacher, can you recommend an activity?"; |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
persisted_vectorstore = FAISS.load_local("_rise_product_db", embeddings) |
|
|
|
|
|
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=persisted_vectorstore.as_retriever()) |
|
result = qa.invoke(question) |
|
print(result) |