Now checks for classificatory credits
Browse files- agent/_create.py +1 -1
- agent/toolset.py +12 -1
agent/_create.py
CHANGED
@@ -83,7 +83,7 @@ def agent(payload):
|
|
83 |
|
84 |
from langchain_core.messages import HumanMessage
|
85 |
|
86 |
-
input = payload.get("input") or "
|
87 |
inputs = [HumanMessage(content=input)]
|
88 |
|
89 |
response = app.invoke(inputs, {"configurable": {"thread_id": memory.thread_id} } )
|
|
|
83 |
|
84 |
from langchain_core.messages import HumanMessage
|
85 |
|
86 |
+
input = payload.get("input") or "Can I earn credit?"
|
87 |
inputs = [HumanMessage(content=input)]
|
88 |
|
89 |
response = app.invoke(inputs, {"configurable": {"thread_id": memory.thread_id} } )
|
agent/toolset.py
CHANGED
@@ -25,6 +25,17 @@ def frequently_asked_questions(input: str):
|
|
25 |
result = qa.invoke(input)
|
26 |
return result
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
class RecommendActivityInput(BaseModel):
|
29 |
profile: str = Field(description="should be a penportrait of the user describing their interests and objectives. If they have a specific thing they are interested in, it should state that")
|
30 |
|
@@ -49,7 +60,7 @@ def recommend_activity(profile: str) -> str:
|
|
49 |
result = qa.invoke("recommend an activity relevant to the following profile: "+profile)
|
50 |
return result
|
51 |
|
52 |
-
tools = [frequently_asked_questions]
|
53 |
|
54 |
from langgraph.prebuilt import ToolExecutor
|
55 |
|
|
|
25 |
result = qa.invoke(input)
|
26 |
return result
|
27 |
|
28 |
+
@tool
|
29 |
+
def check_eligibility(input: str):
|
30 |
+
"""
|
31 |
+
Use this to check whether a student is eligible to earn classificatory credits
|
32 |
+
"""
|
33 |
+
from flask import request
|
34 |
+
|
35 |
+
from langchain_community.document_loaders import WebBaseLoader
|
36 |
+
document = WebBaseLoader("https://rise.mmu.ac.uk/wp-content/themes/rise/helpers/user/student_eligibility/chatbotquery.php?query=eligibility&wpid="+request.values.get("user_id")).load()
|
37 |
+
return document[0].page_content
|
38 |
+
|
39 |
class RecommendActivityInput(BaseModel):
|
40 |
profile: str = Field(description="should be a penportrait of the user describing their interests and objectives. If they have a specific thing they are interested in, it should state that")
|
41 |
|
|
|
60 |
result = qa.invoke("recommend an activity relevant to the following profile: "+profile)
|
61 |
return result
|
62 |
|
63 |
+
tools = [frequently_asked_questions, check_eligibility]
|
64 |
|
65 |
from langgraph.prebuilt import ToolExecutor
|
66 |
|