def train(): from langchain_community.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import CharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores.faiss import FAISS documents = CSVLoader(file_path="train/posts.csv").load() # Split document in chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=30) docs = text_splitter.split_documents(documents=documents) embeddings = OpenAIEmbeddings() # Create vectors vectorstore = FAISS.from_documents(docs, embeddings) # Persist the vectors locally on disk vectorstore.save_local("_rise_product_db"); return {"trained":"success"}