from langchain_community.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import CharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores.faiss import FAISS from dotenv import load_dotenv from langchain.document_loaders import WebBaseLoader load_dotenv(); documents = WebBaseLoader("https://rise.mmu.ac.uk/what-is-rise/").load() # Split document in chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=30) docs = text_splitter.split_documents(documents=documents) embeddings = OpenAIEmbeddings() # Create vectors vectorstore = FAISS.from_documents(docs, embeddings) # Persist the vectors locally on disk vectorstore.save_local("_rise_faq_db");