CommonCanvas / app.py
multimodalart's picture
Update app.py
07d0333 verified
raw
history blame
8.04 kB
import gradio as gr
from diffusers import AutoPipelineForText2Image
import numpy as np
import math
import spaces
import torch
import random
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
device="cuda"
pipe_xlc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-XLC",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
pipe_xlnc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-XLNC",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
pipe_sc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-SC",
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
pipe_snc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-SNC",
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
@spaces.GPU
def run_xlc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_xlc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
@spaces.GPU
def run_xlnc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_xlnc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
@spaces.GPU
def run_sc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
@spaces.GPU
def run_snc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
.tabitem{
padding: 0 !important;
}
'''
with gr.Blocks(css=css, theme=theme) as demo:
gr.Markdown('''# CommonCanvas Demo
[CommonCanvas suite of models](https://huggingface.co/collections/temp-org-cc/commoncanvas-66226ef9688b3580a5954653) trained on [CommonCatalogue](https://huggingface.co/collections/temp-org-cc/commoncatalogue-6530907589ffafffe87c31c5), ~70M Creative Commons images.
''')
with gr.Group():
with gr.Tab("XL-C model"):
with gr.Row():
prompt_xlc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for XL-C")
button_xlc = gr.Button("Generate", min_width=120)
with gr.Tab("XL-NC model"):
with gr.Row():
prompt_xlnc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for XL-NC")
button_xlnc = gr.Button("Generate", min_width=120)
with gr.Tab("S-C model"):
with gr.Row():
prompt_sc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for S-C")
button_sc = gr.Button("Generate", min_width=120)
with gr.Tab("S-NC model"):
with gr.Row():
prompt_snc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for S-NC")
button_snc = gr.Button("Generate", min_width=120)
output = gr.Image(label="Your result", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=7.0)
negative_prompt = gr.Textbox(label="Negative prompt", info="Is only applied for the CFG part, leave blank for unconditional generation")
pag_scale = gr.Number(label="Pag Scale", value=3.0)
pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
seed = gr.Slider(minimum=1, maximum=9007199254740991, step=1, randomize=True)
with gr.Accordion("Use it with 🧨 diffusers, ComfyUI, AUTOMATIC111, Forge, SD.Next, Invoke, etc.", open=False):
gr.Markdown('''The CommonCanvas S and CommonCanvas XL collections are drop-in replacements of Stable Diffusion 2 and Stable Diffusion XL respectively and can be used as such with `diffusers` or in UIs such as ComfyUI, AUTOMATIC1111, SDNext, InvokeAI, etc.
## Using it with diffusers
```py
from diffusers import AutoPipelineForText2Image
pipe = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-XLC", #here you can pick between
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
prompt = "a cat"
image = pipe_xlc(prompt, num_inference_steps=25).images[0]
```
## Using it ComfyUI/Automatic1111
- [CommonCanvasSC.safetensors](#) (SD2 drop-in, commercial)
- [CommonCanvasSNC.safetensors](#) (SD2 drop-in, non-commercial - trained on more data)
- [CommonCanvasXLC.safetensors](#) (SDXL drop-in, commercial)
- [CommonCanvasXLNC.safetensors](#) (SDXL drop-in, non-commercial - trained on more data)
''')
#gr.Examples(fn=run, examples=[" ", "an insect robot preparing a delicious meal, anime style", "a photo of a group of friends at an amusement park"], inputs=prompt, outputs=[output, seed], cache_examples=True)
gr.on(
triggers=[
button_xlc.click,
prompt_xlc.submit
],
fn=run_xlc,
inputs=[prompt_xlc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
gr.on(
triggers=[
button_xlnc.click,
prompt_xlnc.submit
],
fn=run_xlnc,
inputs=[prompt_xlnc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
gr.on(
triggers=[
button_sc.click,
prompt_sc.submit
],
fn=run_sc,
inputs=[prompt_sc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
gr.on(
triggers=[
button_snc.click,
prompt_snc.submit
],
fn=run_sc,
inputs=[prompt_snc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
if __name__ == "__main__":
demo.launch(share=True)