Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoProcessor, Pix2StructForConditionalGeneration | |
import torch | |
from PIL import Image | |
import json | |
import vl_convert as vlc # Ensure you have this library installed (pip install vl-convert) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained("google/matcha-base") | |
processor.image_processor.is_vqa = False | |
model = Pix2StructForConditionalGeneration.from_pretrained("martinsinnona/visdecode_B").to(device) | |
model.eval() | |
def generate_caption(image): | |
inputs = processor(images=image, return_tensors="pt", max_patches=1024).to(device) | |
generated_ids = model.generate(flattened_patches=inputs.flattened_patches, attention_mask=inputs.attention_mask, max_length=600) | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Generate the Vega image | |
vega = string_to_vega(generated_caption) | |
vega_image = draw_vega(vega) | |
return generated_caption, vega_image | |
def draw_vega(vega, scale=3): | |
spec = json.dumps(vega, indent=4) | |
png_data = vlc.vegalite_to_png(vl_spec=spec, scale=scale) | |
return Image.open(png_data) | |
def string_to_vega(string): | |
string = string.replace("'", "\"") | |
vega = json.loads(string) | |
for axis in ["x", "y"]: | |
field = vega["encoding"][axis]["field"] | |
if field == "": | |
vega["encoding"][axis]["field"] = axis | |
vega["encoding"][axis]["title"] = "" | |
else: | |
for entry in vega["data"]["values"]: | |
entry[field] = entry.pop(axis) | |
return vega | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_caption, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Textbox(), gr.Image(type="pil")], | |
title="Image to Vega-Lite", | |
description="Upload an image to generate vega-lite" | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(share=True) | |