Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
optimise
Browse files
app.py
CHANGED
@@ -9,10 +9,8 @@ import torch
|
|
9 |
import requests
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
14 |
import gradio as gr
|
15 |
-
import
|
16 |
import json
|
17 |
|
18 |
@dataclass
|
@@ -54,10 +52,9 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
54 |
label = detection.label
|
55 |
score = detection.score
|
56 |
box = detection.box
|
57 |
-
mask = detection.mask
|
58 |
|
59 |
if include_bboxes:
|
60 |
-
color = np.random.randint(0, 256, size=3)
|
61 |
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
62 |
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
63 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
@@ -65,8 +62,7 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
65 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
66 |
|
67 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
|
68 |
-
|
69 |
-
return annotated_image
|
70 |
|
71 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
72 |
if isinstance(image, str) and image.startswith("http"):
|
@@ -77,19 +73,14 @@ def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
|
77 |
image = image.convert("RGB")
|
78 |
return image
|
79 |
|
80 |
-
def get_boxes(detection_results: List[DetectionResult]) -> List[List[
|
81 |
-
|
82 |
-
for result in detection_results:
|
83 |
-
xyxy = result.box.xyxy
|
84 |
-
boxes.append(xyxy)
|
85 |
-
return [boxes]
|
86 |
|
87 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
88 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
89 |
if len(contours) == 0:
|
90 |
return np.array([])
|
91 |
-
|
92 |
-
return largest_contour
|
93 |
|
94 |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
95 |
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1).numpy().astype(np.uint8)
|
@@ -101,21 +92,19 @@ def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> L
|
|
101 |
masks[idx] = cv2.fillPoly(np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
102 |
return list(masks)
|
103 |
|
104 |
-
|
105 |
-
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
106 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
107 |
-
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection"
|
108 |
-
labels = [label if label.endswith(".") else label+"." for label in labels]
|
109 |
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
110 |
return [DetectionResult.from_dict(result) for result in results]
|
111 |
|
112 |
-
@spaces.GPU
|
113 |
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
114 |
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
115 |
-
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id)
|
116 |
processor = AutoProcessor.from_pretrained(segmenter_id)
|
117 |
boxes = get_boxes(detection_results)
|
118 |
-
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt")
|
119 |
outputs = segmentator(**inputs)
|
120 |
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
121 |
masks = refine_masks(masks, polygon_refinement)
|
@@ -152,9 +141,7 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
|
|
152 |
for detection in detections:
|
153 |
if detection.mask is not None:
|
154 |
extract_and_paste_insect(image, detection, yellow_background)
|
155 |
-
|
156 |
-
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
157 |
-
return yellow_background
|
158 |
|
159 |
def run_length_encoding(mask):
|
160 |
pixels = mask.flatten()
|
|
|
9 |
import requests
|
10 |
import numpy as np
|
11 |
from PIL import Image
|
|
|
|
|
12 |
import gradio as gr
|
13 |
+
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
14 |
import json
|
15 |
|
16 |
@dataclass
|
|
|
52 |
label = detection.label
|
53 |
score = detection.score
|
54 |
box = detection.box
|
|
|
55 |
|
56 |
if include_bboxes:
|
57 |
+
color = [int(c) for c in np.random.randint(0, 256, size=3)]
|
58 |
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
59 |
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
60 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
|
62 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
63 |
|
64 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
|
65 |
+
return annotate(image, detections, include_bboxes)
|
|
|
66 |
|
67 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
68 |
if isinstance(image, str) and image.startswith("http"):
|
|
|
73 |
image = image.convert("RGB")
|
74 |
return image
|
75 |
|
76 |
+
def get_boxes(detection_results: List[DetectionResult]) -> List[List[float]]:
|
77 |
+
return [result.box.xyxy for result in detection_results]
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
80 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
81 |
if len(contours) == 0:
|
82 |
return np.array([])
|
83 |
+
return max(contours, key=cv2.contourArea)
|
|
|
84 |
|
85 |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
86 |
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1).numpy().astype(np.uint8)
|
|
|
92 |
masks[idx] = cv2.fillPoly(np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
93 |
return list(masks)
|
94 |
|
95 |
+
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[DetectionResult]:
|
|
|
96 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
97 |
+
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection")
|
98 |
+
labels = [label if label.endswith(".") else label + "." for label in labels]
|
99 |
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
100 |
return [DetectionResult.from_dict(result) for result in results]
|
101 |
|
|
|
102 |
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
103 |
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
104 |
+
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id)
|
105 |
processor = AutoProcessor.from_pretrained(segmenter_id)
|
106 |
boxes = get_boxes(detection_results)
|
107 |
+
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt")
|
108 |
outputs = segmentator(**inputs)
|
109 |
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
110 |
masks = refine_masks(masks, polygon_refinement)
|
|
|
141 |
for detection in detections:
|
142 |
if detection.mask is not None:
|
143 |
extract_and_paste_insect(image, detection, yellow_background)
|
144 |
+
return cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
|
|
|
|
145 |
|
146 |
def run_length_encoding(mask):
|
147 |
pixels = mask.flatten()
|