Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
runtime broken fix
Browse files
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install gradio==4.29.0') # as gradio==4.29.0 doesn't work in requirements.txt
|
3 |
+
|
4 |
+
import random
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, List, Dict, Optional, Union, Tuple
|
7 |
+
import cv2
|
8 |
+
import torch
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
14 |
+
import gradio as gr
|
15 |
+
import spaces
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class BoundingBox:
|
19 |
+
xmin: int
|
20 |
+
ymin: int
|
21 |
+
xmax: int
|
22 |
+
ymax: int
|
23 |
+
|
24 |
+
@property
|
25 |
+
def xyxy(self) -> List[float]:
|
26 |
+
return [self.xmin, self.ymin, self.xmax, self.ymax]
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class DetectionResult:
|
30 |
+
score: float
|
31 |
+
label: str
|
32 |
+
box: BoundingBox
|
33 |
+
mask: Optional[np.ndarray] = None
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
|
37 |
+
return cls(
|
38 |
+
score=detection_dict['score'],
|
39 |
+
label=detection_dict['label'],
|
40 |
+
box=BoundingBox(
|
41 |
+
xmin=detection_dict['box']['xmin'],
|
42 |
+
ymin=detection_dict['box']['ymin'],
|
43 |
+
xmax=detection_dict['box']['xmax'],
|
44 |
+
ymax=detection_dict['box']['ymax']
|
45 |
+
)
|
46 |
+
)
|
47 |
+
|
48 |
+
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
49 |
+
image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
|
50 |
+
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
51 |
+
|
52 |
+
for detection in detection_results:
|
53 |
+
label = detection.label
|
54 |
+
score = detection.score
|
55 |
+
box = detection.box
|
56 |
+
mask = detection.mask
|
57 |
+
color = np.random.randint(0, 256, size=3).tolist()
|
58 |
+
|
59 |
+
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
60 |
+
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
61 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
62 |
+
|
63 |
+
if mask is not None:
|
64 |
+
mask_uint8 = (mask * 255).astype(np.uint8)
|
65 |
+
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
66 |
+
cv2.drawContours(image_cv2, contours, -1, color, 2)
|
67 |
+
|
68 |
+
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
69 |
+
|
70 |
+
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult]) -> np.ndarray:
|
71 |
+
annotated_image = annotate(image, detections)
|
72 |
+
return annotated_image
|
73 |
+
|
74 |
+
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
75 |
+
if isinstance(image, str) and image.startswith("http"):
|
76 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
77 |
+
elif isinstance(image, str):
|
78 |
+
image = Image.open(image).convert("RGB")
|
79 |
+
else:
|
80 |
+
image = image.convert("RGB")
|
81 |
+
return image
|
82 |
+
|
83 |
+
def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]]]:
|
84 |
+
boxes = []
|
85 |
+
for result in detection_results:
|
86 |
+
xyxy = result.box.xyxy
|
87 |
+
boxes.append(xyxy)
|
88 |
+
return [boxes]
|
89 |
+
|
90 |
+
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
91 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
92 |
+
if len(contours) == 0:
|
93 |
+
return np.array([])
|
94 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
95 |
+
return largest_contour
|
96 |
+
|
97 |
+
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
98 |
+
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1).numpy().astype(np.uint8)
|
99 |
+
masks = (masks > 0).astype(np.uint8)
|
100 |
+
if polygon_refinement:
|
101 |
+
for idx, mask in enumerate(masks):
|
102 |
+
shape = mask.shape
|
103 |
+
polygon = mask_to_polygon(mask)
|
104 |
+
masks[idx] = cv2.fillPoly(np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
105 |
+
return list(masks)
|
106 |
+
|
107 |
+
@spaces.GPU
|
108 |
+
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
109 |
+
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
110 |
+
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device="cuda")
|
111 |
+
labels = [label if label.endswith(".") else label+"." for label in labels]
|
112 |
+
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
113 |
+
return [DetectionResult.from_dict(result) for result in results]
|
114 |
+
|
115 |
+
@spaces.GPU
|
116 |
+
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
117 |
+
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
118 |
+
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to("cuda")
|
119 |
+
processor = AutoProcessor.from_pretrained(segmenter_id)
|
120 |
+
boxes = get_boxes(detection_results)
|
121 |
+
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to("cuda")
|
122 |
+
outputs = segmentator(**inputs)
|
123 |
+
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
124 |
+
masks = refine_masks(masks, polygon_refinement)
|
125 |
+
for detection_result, mask in zip(detection_results, masks):
|
126 |
+
detection_result.mask = mask
|
127 |
+
return detection_results
|
128 |
+
|
129 |
+
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, polygon_refinement: bool = False, detector_id: Optional[str] = None, segmenter_id: Optional[str] = None) -> Tuple[np.ndarray, List[DetectionResult]]:
|
130 |
+
image = load_image(image)
|
131 |
+
detections = detect(image, labels, threshold, detector_id)
|
132 |
+
detections = segment(image, detections, polygon_refinement, segmenter_id)
|
133 |
+
return np.array(image), detections
|
134 |
+
|
135 |
+
def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
|
136 |
+
y, x = np.where(mask)
|
137 |
+
return x.min(), y.min(), x.max(), y.max()
|
138 |
+
|
139 |
+
def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionResult, background: np.ndarray) -> None:
|
140 |
+
mask = detection.mask
|
141 |
+
xmin, ymin, xmax, ymax = mask_to_min_max(mask)
|
142 |
+
insect_crop = original_image[ymin:ymax, xmin:xmax]
|
143 |
+
mask_crop = mask[ymin:ymax, xmin:xmax]
|
144 |
+
|
145 |
+
# Ensure that we keep the original colors of the insect
|
146 |
+
insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop)
|
147 |
+
|
148 |
+
x_offset, y_offset = xmin, ymin
|
149 |
+
x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0]
|
150 |
+
|
151 |
+
# Place the insect onto the yellow background
|
152 |
+
background[y_offset:y_end, x_offset:x_end] = insect
|
153 |
+
|
154 |
+
def create_yellow_background_with_insects(image: np.ndarray, detections: List[DetectionResult]) -> np.ndarray:
|
155 |
+
yellow_background = np.full((image.shape[0], image.shape[1], 3), (0, 255, 255), dtype=np.uint8)
|
156 |
+
for detection in detections:
|
157 |
+
if detection.mask is not None:
|
158 |
+
extract_and_paste_insect(image, detection, yellow_background)
|
159 |
+
return yellow_background
|
160 |
+
|
161 |
+
def draw_classification_boxes(image_with_insects, detections):
|
162 |
+
for detection in detections:
|
163 |
+
label = detection.label
|
164 |
+
score = detection.score
|
165 |
+
box = detection.box
|
166 |
+
color = (0, 255, 255) # Yellow color for bounding box
|
167 |
+
|
168 |
+
cv2.rectangle(image_with_insects, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
169 |
+
(text_width, text_height), baseline = cv2.getTextSize(f"{label}: {score:.2f}", cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
|
170 |
+
cv2.rectangle(
|
171 |
+
image_with_insects,
|
172 |
+
(box.xmin, box.ymin - text_height - baseline),
|
173 |
+
(box.xmin + text_width, box.ymin),
|
174 |
+
color,
|
175 |
+
thickness=cv2.FILLED
|
176 |
+
)
|
177 |
+
cv2.putText(
|
178 |
+
image_with_insects,
|
179 |
+
f"{label}: {score:.2f}",
|
180 |
+
(box.xmin, box.ymin - baseline),
|
181 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
182 |
+
0.5,
|
183 |
+
(255, 255, 255),
|
184 |
+
2
|
185 |
+
)
|
186 |
+
return image_with_insects
|
187 |
+
|
188 |
+
def process_image(image):
|
189 |
+
labels = ["insect"]
|
190 |
+
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
191 |
+
annotated_image = plot_detections(original_image, detections)
|
192 |
+
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
193 |
+
yellow_background_with_boxes = draw_classification_boxes(yellow_background_with_insects.copy(), detections)
|
194 |
+
return annotated_image, yellow_background_with_boxes
|
195 |
+
|
196 |
+
gr.Interface(
|
197 |
+
fn=process_image,
|
198 |
+
inputs=gr.Image(type="pil"),
|
199 |
+
outputs=[gr.Image(type="numpy"), gr.Image(type="numpy")],
|
200 |
+
title="🐞 InsectSAM + GroundingDINO Inference",
|
201 |
+
).launch()
|