Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -43,8 +43,7 @@ class DetectionResult:
|
|
43 |
ymin=detection_dict['box']['ymin'],
|
44 |
xmax=detection_dict['box']['xmax'],
|
45 |
ymax=detection_dict['box']['ymax']
|
46 |
-
)
|
47 |
-
mask=detection_dict.get('mask')
|
48 |
)
|
49 |
|
50 |
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
@@ -52,12 +51,20 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
52 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
53 |
|
54 |
for detection in detection_results:
|
|
|
|
|
|
|
55 |
mask = detection.mask
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if mask is not None:
|
57 |
mask_uint8 = (mask * 255).astype(np.uint8)
|
58 |
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
59 |
-
|
60 |
-
cv2.drawContours(image_cv2, contours, -1, (0, 0, 0), 2) # Black color for contours
|
61 |
|
62 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
63 |
|
@@ -188,25 +195,25 @@ def detections_to_json(detections):
|
|
188 |
|
189 |
def process_image(image, include_json):
|
190 |
labels = ["insect"]
|
191 |
-
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
192 |
-
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
193 |
-
if include_json:
|
194 |
-
detections_json = detections_to_json(detections)
|
195 |
-
json_output_path = "insect_detections.json"
|
196 |
-
with open(json_output_path,
|
197 |
-
json.dump(detections_json, json_file, indent=4)
|
198 |
-
return yellow_background_with_insects, json.dumps(detections_json, separators=(
|
199 |
-
else:
|
200 |
-
return yellow_background_with_insects, None
|
201 |
|
202 |
examples = [
|
203 |
-
[
|
204 |
]
|
205 |
|
206 |
gr.Interface(
|
207 |
-
fn=process_image,
|
208 |
-
inputs=[gr.Image(type
|
209 |
-
outputs=[gr.Image(type
|
210 |
-
title
|
211 |
-
examples=examples
|
212 |
).launch()
|
|
|
43 |
ymin=detection_dict['box']['ymin'],
|
44 |
xmax=detection_dict['box']['xmax'],
|
45 |
ymax=detection_dict['box']['ymax']
|
46 |
+
)
|
|
|
47 |
)
|
48 |
|
49 |
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
|
|
51 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
52 |
|
53 |
for detection in detection_results:
|
54 |
+
label = detection.label
|
55 |
+
score = detection.score
|
56 |
+
box = detection.box
|
57 |
mask = detection.mask
|
58 |
+
color = np.random.randint(0, 256, size=3).tolist()
|
59 |
+
|
60 |
+
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
61 |
+
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
62 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
63 |
+
|
64 |
if mask is not None:
|
65 |
mask_uint8 = (mask * 255).astype(np.uint8)
|
66 |
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
67 |
+
cv2.drawContours(image_cv2, contours, -1, color, 2)
|
|
|
68 |
|
69 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
70 |
|
|
|
195 |
|
196 |
def process_image(image, include_json):
|
197 |
labels = ["insect"]
|
198 |
+
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
199 |
+
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
200 |
+
if include_json:
|
201 |
+
detections_json = detections_to_json(detections)
|
202 |
+
json_output_path = "insect_detections.json"
|
203 |
+
with open(json_output_path, 'w') as json_file:
|
204 |
+
json.dump(detections_json, json_file, indent=4)
|
205 |
+
return yellow_background_with_insects, json.dumps(detections_json, separators=(',', ':'))
|
206 |
+
else:
|
207 |
+
return yellow_background_with_insects, None
|
208 |
|
209 |
examples = [
|
210 |
+
["flower-night.jpg"]
|
211 |
]
|
212 |
|
213 |
gr.Interface(
|
214 |
+
fn=process_image,
|
215 |
+
inputs=[gr.Image(type="pil"), gr.Checkbox(label="Include JSON", value=False)],
|
216 |
+
outputs=[gr.Image(type="numpy"), gr.Textbox()],
|
217 |
+
title="InsectSAM π",
|
218 |
+
examples=examples
|
219 |
).launch()
|