File size: 1,015 Bytes
bc7ab0b
 
26fbd64
763a979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a531f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
!pip install prophet

import gradio as gr
import pandas as pd


from prophet import Prophet


def plot_forecast(example_name, period):
    df = pd.read_csv(f'https://raw.githubusercontent.com/facebook/prophet/main/examples/example_{example_name}.csv')
    df.columns = ['ds','y']

    m = Prophet()
    m.fit(df)
    future = m.make_future_dataframe(periods=period)
    forecast = m.predict(future)
    fig = m.plot(forecast)
    return fig

with gr.Blocks() as demo:
    gr.Markdown(
    """
    ๆ™‚็ณปๅˆ—ไบˆๆธฌใƒขใƒ‡ใƒซใฎ็ตๆžœ
    """)
    with gr.Row():
        example = gr.Dropdown(["air_passengers", "pedestrians_covid", "retail_sales"], label="ใƒ‡ใƒผใ‚ฟใ‚ฝใƒผใ‚น", value="air_passengers")
        period = gr.Slider(25, 250, 25, step=25, label="ไบˆๆธฌๆœŸ้–“")
 
    plt = gr.Plot()

    example.change(plot_forecast, [example,period], plt, queue=False)
    period.change(plot_forecast, [example,period], plt, queue=False)
    demo.load(plot_forecast, [example,period], plt, queue=False)    

demo.launch()