Spaces:
Runtime error
Runtime error
import altair | |
import gradio as gr | |
from math import sqrt | |
import matplotlib | |
matplotlib.use("Agg") | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import datetime | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import log_loss | |
from sklearn.preprocessing import StandardScaler | |
import requests | |
from bs4 import BeautifulSoup as bs | |
from requests_html import AsyncHTMLSession | |
import codecs | |
import io | |
import random | |
import requests | |
import time | |
from datetime import date, timedelta | |
from tqdm import tqdm | |
from typing import Generator, Tuple | |
import numpy as np | |
import pandas as pd | |
def date_range( | |
start: date, stop: date, step: timedelta = timedelta(1) | |
) -> Generator[date, None, None]: | |
"""startからendまで日付をstep日ずつループさせるジェネレータ""" | |
current = start | |
while current < stop: | |
yield current | |
current += step | |
def get_url(download_date: date) -> Tuple[str, str]: | |
"""ダウンロードするURLと日付の文字列を返す""" | |
month = download_date.strftime("%Y%m") | |
day = download_date.strftime("%Y%m%d") | |
return ( | |
f"https://www.shijou-nippo.metro.tokyo.lg.jp/SN/{month}/{day}/Sui/Sui_K1.csv", | |
day, | |
) | |
def content_wrap(content): | |
"""1行目にヘッダ行が来るまでスキップする""" | |
buffer = "" | |
first = True | |
for line in io.BytesIO(content): | |
line_str = codecs.decode(line, "shift-jis") | |
if first: | |
if "品名" in line_str: | |
first = False | |
buffer = line_str | |
else: | |
continue | |
else: | |
buffer += line_str | |
return io.StringIO(buffer) | |
def insert_data(data, day, low_price, center_price, high_price, quantity): | |
""" "データをリストに追加する""" | |
data["date"].append(day) | |
data["low_price"].append(low_price) | |
data["center_price"].append(center_price) | |
data["high_price"].append(high_price) | |
data["quantity"].append(quantity) | |
def to_numeric(x): | |
"""文字列を数値に変換する""" | |
if isinstance(x, str): | |
return float(x) | |
else: | |
return x | |
def get_fish_price_data(start_date: date, end_date: date) -> pd.core.frame.DataFrame: | |
""" | |
東京卸売市場からデータを引っ張ってくる | |
:param start_date: 開始日 | |
:param end_date: 終了日 | |
:return: あじの値段を結合したデータ | |
""" | |
data = { | |
"date": [], | |
"low_price": [], | |
"center_price": [], | |
"high_price": [], | |
"quantity": [], | |
} | |
iterator = tqdm( | |
date_range(start_date, end_date), total=(end_date - start_date).days | |
) | |
for download_date in iterator: | |
url, day = get_url(download_date) | |
iterator.set_description(day) | |
response = requests.get(url) | |
# URLが存在しないとき | |
if response.status_code == 404: | |
insert_data(data, day, np.nan, np.nan, np.nan, 0) | |
continue | |
assert ( | |
response.status_code == 200 | |
), f"Unexpected HTTP response. Please check the website {url}." | |
df = pd.read_csv(content_wrap(response.content)) | |
# 欠損値補完 | |
price_cols = ["安値(円)", "中値(円)", "高値(円)"] | |
for c in price_cols: | |
df[c].mask(df[c] == "-", np.nan, inplace=True) | |
df[c].mask(df[c] == "−", np.nan, inplace=True) | |
df["卸売数量"].mask(df["卸売数量"] == "-", np.nan, inplace=True) | |
df["卸売数量"].mask(df["卸売数量"] == "−", np.nan, inplace=True) | |
# 長崎で獲れたあじの中値と卸売数量 | |
# 品目 == あじ の行だけ抽出 | |
df_aji = df.loc[df["品名"] == "あじ", ["卸売数量"] + price_cols] | |
# あじの販売がなかったら欠損扱いに | |
if len(df_aji) == 0: | |
insert_data(data, day, np.nan, np.nan, np.nan, 0) | |
continue | |
isnan = lambda x: isinstance(x, float) and np.isnan(x) | |
# 産地ごと(?)の鯵の販売実績を調べる | |
low_prices = [] | |
center_prices = [] | |
high_prices = [] | |
quantities = [] | |
for i, row in enumerate(df_aji.iloc): | |
lp, cp, hp, q = row[price_cols + ["卸売数量"]] | |
lp, cp, hp, q = ( | |
to_numeric(lp), | |
to_numeric(cp), | |
to_numeric(hp), | |
to_numeric(q), | |
) | |
# 中値だけが記録されている -> 価格帯が1個だけなので高値、安値も中値と同じにしておく | |
if isnan(lp) and isnan(hp) and (not isnan(cp)): | |
low_prices.append(cp) | |
center_prices.append(cp) | |
high_prices.append(cp) | |
# 高値・安値があり中値がない -> 価格帯2個、とりあえず両者の平均を中値とする | |
elif (not isnan(lp)) and (not isnan(hp)) and isnan(cp): | |
low_prices.append(lp) | |
center_prices.append((lp + hp) / 2) | |
high_prices.append(hp) | |
else: | |
low_prices.append(lp) | |
center_prices.append(cp) | |
high_prices.append(hp) | |
if isnan(row["卸売数量"]): | |
quantities.append(0) | |
else: | |
quantities.append(q) | |
low_price = int(min(low_prices)) | |
center_price = int(sum(center_prices) / len(center_prices)) | |
high_price = int(max(high_prices)) | |
quantity = int(float(sum(quantities))) | |
# 保存 | |
insert_data(data, day, low_price, center_price, high_price, quantity) | |
# 短期間にアクセスが集中しないようにクールタイムを設定 | |
time.sleep(max(0.5 + random.normalvariate(0, 0.3), 0.1)) | |
# DataFrameを作成 | |
df = pd.DataFrame(data) | |
return df | |
# Webページを取得して解析する | |
load_url = "https://www.football-lab.jp/kyot/match/" | |
html = requests.get(load_url) | |
soup = bs(html.content, "html.parser") | |
df_train = pd.read_csv('df_train.csv') | |
X = df_train.drop('audience', axis=1) | |
y = df_train['audience'] | |
linear_regression = LinearRegression() | |
model = linear_regression.fit(X,y) | |
d_today = datetime.date.today() | |
d_tom = datetime.date.today() + datetime.timedelta(days = 1) | |
# 動作確認 | |
d_y = datetime.date.today() + datetime.timedelta(days = -1) | |
if __name__ == "__main__": | |
start_date = d_y | |
end_date = d_today | |
df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date) | |
df_aji_pre['date'] = df_aji_pre['date'].astype(int) | |
# if __name__ == "__main__": | |
# start_date = d_today | |
# end_date = d_tom | |
# df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date) | |
# df_aji_pre['date'] = df_aji_pre['date'].astype(int) | |
url23 = 'https://www.football-lab.jp/ka-f/match/' | |
dfs23 = pd.read_html(url23) | |
#シーズン毎に分類 | |
res23 = pd.DataFrame([['S2023']]*len(dfs23[0])).join(dfs23) #lsuffix='0' | |
df = res23 | |
df = df.rename(columns={'会場': 'stadium', 0: 'year', '開催日': 'date', '観客数': 'audience'}) | |
df = df.query('stadium=="等々力"').reset_index() | |
df = df.query('audience.notna()', engine='python').reset_index() | |
df = df[['audience', 'year', 'date']] | |
#seasonカラムから年を抽出 | |
df["year"] = df["year"].apply(lambda x: str(x)[1:5]) | |
#開催日から月と日を分割 | |
df['month'] = df['date'].str.split(pat='.', expand=True)[0] | |
df['day'] = df['date'].str.split(pat='.', expand=True)[1] | |
#数値データを日付データに変換 | |
df['date'] = pd.to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']}) | |
#日付昇順に並び替える | |
df = df.sort_values('date', ascending=True) | |
df['date_ymd'] = pd.to_datetime(df['date']).dt.strftime('%Y%m%d') | |
df['date_ym'] = pd.to_datetime(df['date']).dt.strftime('%Y%m') | |
df["date_ymd"] = df["date_ymd"].astype(int) | |
df['date_before'] = df['date_ymd'] - 1 | |
df["date_before"] = df["date_before"] | |
df = df[['audience', 'date_ymd', 'date_before']] | |
df['last_audience'] = df['audience'].shift(1) | |
# df_pre = pd.merge(df, df_aji_pre, left_on='date_before', right_on='date', how='left') | |
# df_pre = df_pre.drop(['date_before', 'date_ymd'], axis=1) | |
# df_pre["audience"] = df_pre["audience"].str.replace(",", "").astype(int) | |
# df_pre["last_audience"] = df_pre["last_audience"].str.replace(",", "").astype(int) | |
# start_date = int(start_date) | |
# df_pre = df.query('date <= start_date') | |
df_pre = df.tail(1).reset_index() | |
df_pre = df_pre.drop('index', axis=1) | |
df_aji_ft_pre = pd.concat([df_pre, df_aji_pre], axis=1) | |
df_aji_ft_pre = df_aji_ft_pre[['audience', 'date', 'low_price', 'center_price', 'high_price', 'quantity']] | |
df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date', '観客数': 'audience'}) | |
def outbreak(date): | |
if date: | |
# if __name__ == "__main__": | |
# import datetime | |
# d_today = datetime.date.today() | |
# d_tom = datetime.date.today() + datetime.timedelta(days = 1) | |
# start_date = d_today | |
# end_date = d_tom | |
# df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date) | |
# # df_aji_pre.to_csv("fish_price_pre.csv", index=False) | |
df_pre = df.tail(1).reset_index() | |
df_pre = df_pre.drop('index', axis=1) | |
df_aji_ft_pre = pd.concat([df_pre, df_aji_pre], axis=1) | |
df_aji_ft_pre = df_aji_ft_pre[['audience', 'date', 'low_price', 'center_price', 'high_price', 'quantity']] | |
df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date', '観客数': 'audience'}) | |
X = df_train.drop('audience', axis=1) | |
y = df_train['audience'] | |
pred = linear_regression.predict(df_aji_ft_pre) | |
df_aji_ft_pre['audience_pred'] = pred | |
df_aji_ft_pre['date'] = df_aji_ft_pre['date'].astype(int) | |
fig = plt.figure() | |
plt.plot(df_train['date'], df_train['audience'], label='original') | |
plt.plot(df_aji_ft_pre['date'], df_aji_ft_pre['audience_pred'], '*', label='predict') | |
plt.title("prediction of audince") | |
plt.ylabel("audience") | |
plt.xlabel("date") | |
return fig | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# 川崎フロンターレの観客動員数予測 | |
等々力陸上競技場で行われる川崎フロンターレの直近の試合の観客数を「あじ」の価格と漁獲高を使用し予測する。 | |
## 使用データ | |
* 東京卸売市場日報 | |
* Football Lab | |
## 予測ロジック | |
観客動員数は雨天か否かで左右されると考えられる。そこで雨天の可能性をあじの価格を利用し表した。 | |
一般的に雨天の場合、低気圧の影響で海面が上昇し漁に出ることが難しくなる。 | |
そのため漁獲量が減少し、あじの価格が上昇すると考えられる。 | |
## 特徴量 | |
予測日のあじの高値、予測日のあじの中値、予測日のあじの安値、予測日のあじの卸売数量、直前の試合の観客動員数 | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
date_input = gr.Checkbox(label='予測したい気持ちがありますか?ある場合はチェックしてから、下のpredictボタンを押してください') | |
prediction_btn = gr.Button(value="predict") | |
with gr.Column(): | |
prediction = gr.Plot(label = "時系列プロット") | |
prediction_btn.click(outbreak, inputs=date_input, outputs=prediction) | |
demo.launch() |