Spaces:
Runtime error
Runtime error
masa729406
commited on
Commit
·
b3c9d45
1
Parent(s):
fe17720
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,104 @@
|
|
1 |
-
|
2 |
|
3 |
import gradio as gr
|
4 |
from math import sqrt
|
5 |
-
import pandas as pd
|
6 |
-
import numpy as np
|
7 |
-
from datetime import datetime
|
8 |
import matplotlib
|
|
|
9 |
matplotlib.use("Agg")
|
|
|
10 |
import matplotlib.pyplot as plt
|
|
|
|
|
11 |
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# from bs4 import BeautifulSoup as bs
|
17 |
-
# from requests_html import AsyncHTMLSession
|
18 |
-
|
19 |
-
# # Webページを取得して解析する
|
20 |
-
# load_url = "https://www.football-lab.jp/kyot/match/"
|
21 |
-
# html = requests.get(load_url)
|
22 |
-
# soup = bs(html.content, "html.parser")
|
23 |
-
|
24 |
-
# url23 = 'https://www.football-lab.jp/ka-f/match/'
|
25 |
-
# dfs23 = pd.read_html(url23)
|
26 |
-
# url22 = 'https://www.football-lab.jp/ka-f/match/?year=2022'
|
27 |
-
# dfs22 = pd.read_html(url22)
|
28 |
-
# url21 = 'https://www.football-lab.jp/ka-f/match/?year=2021'
|
29 |
-
# dfs21 = pd.read_html(url21)
|
30 |
-
# url20 = 'https://www.football-lab.jp/ka-f/match/?year=2020'
|
31 |
-
# dfs20 = pd.read_html(url20)
|
32 |
-
|
33 |
-
# #シーズン毎に分類
|
34 |
-
# res23 = pd.DataFrame([['S2023']]*len(dfs23[0])).join(dfs23, lsuffix='0')
|
35 |
-
# res22 = pd.DataFrame([['S2022']]*len(dfs22[0])).join(dfs22, lsuffix='0')
|
36 |
-
# res21 = pd.DataFrame([['S2021']]*len(dfs21[0])).join(dfs21, lsuffix='0')
|
37 |
-
# res20 = pd.DataFrame([['S2020']]*len(dfs20[0])).join(dfs20, lsuffix='0')
|
38 |
-
|
39 |
-
# df_tmp = pd.concat([res23, res22, res21, res20])
|
40 |
-
# df = df_tmp
|
41 |
-
|
42 |
-
# df = df.rename(columns={'会場': 'stadium', 0: 'year', '開催日': 'date', '観客数': 'audience'})
|
43 |
-
# df = df.query('stadium=="等々力"').reset_index()
|
44 |
-
# df = df.query('audience.notna()', engine='python').reset_index()
|
45 |
-
# df = df[['audience', 'year', 'date']]
|
46 |
-
# #seasonカラムから年を抽出
|
47 |
-
# df["year"] = df["year"].apply(lambda x: str(x)[1:5])
|
48 |
-
# #開催日から月と日を分割
|
49 |
-
# df['month'] = df['date'].str.split(pat='.', expand=True)[0]
|
50 |
-
# df['day'] = df['date'].str.split(pat='.', expand=True)[1]
|
51 |
-
# #数値データを日付データに変換
|
52 |
-
# df['date'] = pd.to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']})
|
53 |
-
# #日付昇順に並び替える
|
54 |
-
# df = df.sort_values('date', ascending=True)
|
55 |
-
# df['date_ymd'] = pd.to_datetime(df['date']).dt.strftime('%Y%m%d')
|
56 |
-
# df['date_ym'] = pd.to_datetime(df['date']).dt.strftime('%Y%m')
|
57 |
-
# df["date_ymd"] = df["date_ymd"].astype(int)
|
58 |
-
# df['date_before'] = df['date_ymd'] - 1
|
59 |
-
# df["date_before"] = df["date_before"]
|
60 |
-
# df = df[['audience', 'date_ymd', 'date_before']]
|
61 |
-
# df['last_audience'] = df['audience'].shift(1)
|
62 |
-
|
63 |
-
# df_aji = pd.read_csv('fish_price.csv')
|
64 |
-
|
65 |
-
# df_train = pd.merge(df, df_aji, left_on='date_before', right_on='date', how='left')
|
66 |
-
|
67 |
-
# df_train = df_train.query('date > 20201202')
|
68 |
-
# df_train = df_train.drop(['date_before', 'date_ymd'], axis=1)
|
69 |
-
# df_train["audience"] = df_train["audience"].str.replace(",", "").astype(int)
|
70 |
-
# df_train["last_audience"] = df_train["last_audience"].str.replace(",", "").astype(int)
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
|
|
74 |
X = df_train.drop('audience', axis=1)
|
75 |
y = df_train['audience']
|
76 |
-
|
77 |
-
import sklearn
|
78 |
-
from sklearn.linear_model import LinearRegression
|
79 |
-
from sklearn.metrics import log_loss
|
80 |
-
from sklearn.preprocessing import StandardScaler
|
81 |
linear_regression = LinearRegression()
|
82 |
-
linear_regression.fit(X,y)
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def outbreak(date):
|
86 |
-
if date:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
df_pre = df.tail(1).reset_index()
|
97 |
df_pre = df_pre.drop('index', axis=1)
|
@@ -99,6 +106,9 @@ def outbreak(date):
|
|
99 |
df_aji_ft_pre = df_aji_ft_pre[['audience', 'date', 'low_price', 'center_price', 'high_price', 'quantity']]
|
100 |
df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date', '観客数': 'audience'})
|
101 |
|
|
|
|
|
|
|
102 |
pred = linear_regression.predict(df_aji_ft_pre)
|
103 |
df_aji_ft_pre['audience_pred'] = pred
|
104 |
df_aji_ft_pre['date'] = df_aji_ft_pre['date'].astype(int)
|
|
|
1 |
+
import altair
|
2 |
|
3 |
import gradio as gr
|
4 |
from math import sqrt
|
|
|
|
|
|
|
5 |
import matplotlib
|
6 |
+
|
7 |
matplotlib.use("Agg")
|
8 |
+
|
9 |
import matplotlib.pyplot as plt
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
|
13 |
+
import datetime
|
14 |
|
15 |
+
from sklearn.linear_model import LinearRegression
|
16 |
+
from sklearn.metrics import log_loss
|
17 |
+
from sklearn.preprocessing import StandardScaler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
import requests
|
20 |
+
from bs4 import BeautifulSoup as bs
|
21 |
+
from requests_html import AsyncHTMLSession
|
22 |
|
23 |
+
df_train = pd.read_csv('df_train.csv')
|
24 |
X = df_train.drop('audience', axis=1)
|
25 |
y = df_train['audience']
|
|
|
|
|
|
|
|
|
|
|
26 |
linear_regression = LinearRegression()
|
27 |
+
model = linear_regression.fit(X,y)
|
28 |
+
|
29 |
+
d_today = datetime.date.today()
|
30 |
+
d_tom = datetime.date.today() + datetime.timedelta(days = 1)
|
31 |
+
|
32 |
+
# 動作確認
|
33 |
+
d_y = datetime.date.today() + datetime.timedelta(days = -1)
|
34 |
+
if __name__ == "__main__":
|
35 |
+
start_date = d_y
|
36 |
+
end_date = d_today
|
37 |
+
df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date)
|
38 |
+
df_aji_pre['date'] = df_aji_pre['date'].astype(int)
|
39 |
+
|
40 |
+
# if __name__ == "__main__":
|
41 |
+
# start_date = d_today
|
42 |
+
# end_date = d_tom
|
43 |
+
# df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date)
|
44 |
+
# df_aji_pre['date'] = df_aji_pre['date'].astype(int)
|
45 |
+
|
46 |
+
url23 = 'https://www.football-lab.jp/ka-f/match/'
|
47 |
+
dfs23 = pd.read_html(url23)
|
48 |
+
|
49 |
+
#シーズン毎に分類
|
50 |
+
res23 = pd.DataFrame([['S2023']]*len(dfs23[0])).join(dfs23, lsuffix='0')
|
51 |
+
|
52 |
+
df = res23
|
53 |
+
|
54 |
+
df = df.rename(columns={'会場': 'stadium', 0: 'year', '開催日': 'date', '観客数': 'audience'})
|
55 |
+
df = df.query('stadium=="等々力"').reset_index()
|
56 |
+
df = df.query('audience.notna()', engine='python').reset_index()
|
57 |
+
df = df[['audience', 'year', 'date']]
|
58 |
+
#seasonカラムから年を抽出
|
59 |
+
df["year"] = df["year"].apply(lambda x: str(x)[1:5])
|
60 |
+
#開催日から月と日を分割
|
61 |
+
df['month'] = df['date'].str.split(pat='.', expand=True)[0]
|
62 |
+
df['day'] = df['date'].str.split(pat='.', expand=True)[1]
|
63 |
+
#数値データを日付データに変換
|
64 |
+
df['date'] = pd.to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']})
|
65 |
+
#日付昇順に並び替える
|
66 |
+
df = df.sort_values('date', ascending=True)
|
67 |
+
df['date_ymd'] = pd.to_datetime(df['date']).dt.strftime('%Y%m%d')
|
68 |
+
df['date_ym'] = pd.to_datetime(df['date']).dt.strftime('%Y%m')
|
69 |
+
df["date_ymd"] = df["date_ymd"].astype(int)
|
70 |
+
df['date_before'] = df['date_ymd'] - 1
|
71 |
+
df["date_before"] = df["date_before"]
|
72 |
+
df = df[['audience', 'date_ymd', 'date_before']]
|
73 |
+
df['last_audience'] = df['audience'].shift(1)
|
74 |
+
|
75 |
+
# df_pre = pd.merge(df, df_aji_pre, left_on='date_before', right_on='date', how='left')
|
76 |
+
|
77 |
+
# df_pre = df_pre.drop(['date_before', 'date_ymd'], axis=1)
|
78 |
+
# df_pre["audience"] = df_pre["audience"].str.replace(",", "").astype(int)
|
79 |
+
# df_pre["last_audience"] = df_pre["last_audience"].str.replace(",", "").astype(int)
|
80 |
+
|
81 |
+
# start_date = int(start_date)
|
82 |
+
# df_pre = df.query('date <= start_date')
|
83 |
+
|
84 |
+
|
85 |
+
df_pre = df.tail(1).reset_index()
|
86 |
+
df_pre = df_pre.drop('index', axis=1)
|
87 |
+
df_aji_ft_pre = pd.concat([df_pre, df_aji_pre], axis=1)
|
88 |
+
df_aji_ft_pre = df_aji_ft_pre[['audience', 'date', 'low_price', 'center_price', 'high_price', 'quantity']]
|
89 |
+
df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date', '観客数': 'audience'})
|
90 |
|
91 |
def outbreak(date):
|
92 |
+
if date:
|
93 |
+
|
94 |
+
# if __name__ == "__main__":
|
95 |
+
# import datetime
|
96 |
+
# d_today = datetime.date.today()
|
97 |
+
# d_tom = datetime.date.today() + datetime.timedelta(days = 1)
|
98 |
+
# start_date = d_today
|
99 |
+
# end_date = d_tom
|
100 |
+
# df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date)
|
101 |
+
# # df_aji_pre.to_csv("fish_price_pre.csv", index=False)
|
102 |
|
103 |
df_pre = df.tail(1).reset_index()
|
104 |
df_pre = df_pre.drop('index', axis=1)
|
|
|
106 |
df_aji_ft_pre = df_aji_ft_pre[['audience', 'date', 'low_price', 'center_price', 'high_price', 'quantity']]
|
107 |
df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date', '観客数': 'audience'})
|
108 |
|
109 |
+
X = df_train.drop('audience', axis=1)
|
110 |
+
y = df_train['audience']
|
111 |
+
|
112 |
pred = linear_regression.predict(df_aji_ft_pre)
|
113 |
df_aji_ft_pre['audience_pred'] = pred
|
114 |
df_aji_ft_pre['date'] = df_aji_ft_pre['date'].astype(int)
|