import altair import gradio as gr from math import sqrt import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np import pandas as pd import datetime from sklearn.linear_model import LinearRegression from sklearn.metrics import log_loss from sklearn.preprocessing import StandardScaler import requests from bs4 import BeautifulSoup as bs from requests_html import AsyncHTMLSession import codecs import io import random import requests import time from datetime import date, timedelta from tqdm import tqdm from typing import Generator, Tuple import numpy as np import pandas as pd def date_range( start: date, stop: date, step: timedelta = timedelta(1) ) -> Generator[date, None, None]: """startからendまで日付をstep日ずつループさせるジェネレータ""" current = start while current < stop: yield current current += step def get_url(download_date: date) -> Tuple[str, str]: """ダウンロードするURLと日付の文字列を返す""" month = download_date.strftime("%Y%m") day = download_date.strftime("%Y%m%d") return ( f"https://www.shijou-nippo.metro.tokyo.lg.jp/SN/{month}/{day}/Sui/Sui_K1.csv", day, ) def content_wrap(content): """1行目にヘッダ行が来るまでスキップする""" buffer = "" first = True for line in io.BytesIO(content): line_str = codecs.decode(line, "shift-jis") if first: if "品名" in line_str: first = False buffer = line_str else: continue else: buffer += line_str return io.StringIO(buffer) def insert_data(data, day, low_price, center_price, high_price, quantity): """ "データをリストに追加する""" data["date"].append(day) data["low_price"].append(low_price) data["center_price"].append(center_price) data["high_price"].append(high_price) data["quantity"].append(quantity) def to_numeric(x): """文字列を数値に変換する""" if isinstance(x, str): return float(x) else: return x def get_fish_price_data(start_date: date, end_date: date) -> pd.core.frame.DataFrame: """ 東京卸売市場からデータを引っ張ってくる :param start_date: 開始日 :param end_date: 終了日 :return: あじの値段を結合したデータ """ data = { "date": [], "low_price": [], "center_price": [], "high_price": [], "quantity": [], } iterator = tqdm( date_range(start_date, end_date), total=(end_date - start_date).days ) for download_date in iterator: url, day = get_url(download_date) iterator.set_description(day) response = requests.get(url) # URLが存在しないとき if response.status_code == 404: insert_data(data, day, np.nan, np.nan, np.nan, 0) continue assert ( response.status_code == 200 ), f"Unexpected HTTP response. Please check the website {url}." df = pd.read_csv(content_wrap(response.content)) # 欠損値補完 price_cols = ["安値(円)", "中値(円)", "高値(円)"] for c in price_cols: df[c].mask(df[c] == "-", np.nan, inplace=True) df[c].mask(df[c] == "−", np.nan, inplace=True) df["卸売数量"].mask(df["卸売数量"] == "-", np.nan, inplace=True) df["卸売数量"].mask(df["卸売数量"] == "−", np.nan, inplace=True) # 長崎で獲れたあじの中値と卸売数量 # 品目 == あじ の行だけ抽出 df_aji = df.loc[df["品名"] == "あじ", ["卸売数量"] + price_cols] # あじの販売がなかったら欠損扱いに if len(df_aji) == 0: insert_data(data, day, np.nan, np.nan, np.nan, 0) continue isnan = lambda x: isinstance(x, float) and np.isnan(x) # 産地ごと(?)の鯵の販売実績を調べる low_prices = [] center_prices = [] high_prices = [] quantities = [] for i, row in enumerate(df_aji.iloc): lp, cp, hp, q = row[price_cols + ["卸売数量"]] lp, cp, hp, q = ( to_numeric(lp), to_numeric(cp), to_numeric(hp), to_numeric(q), ) # 中値だけが記録されている -> 価格帯が1個だけなので高値、安値も中値と同じにしておく if isnan(lp) and isnan(hp) and (not isnan(cp)): low_prices.append(cp) center_prices.append(cp) high_prices.append(cp) # 高値・安値があり中値がない -> 価格帯2個、とりあえず両者の平均を中値とする elif (not isnan(lp)) and (not isnan(hp)) and isnan(cp): low_prices.append(lp) center_prices.append((lp + hp) / 2) high_prices.append(hp) else: low_prices.append(lp) center_prices.append(cp) high_prices.append(hp) if isnan(row["卸売数量"]): quantities.append(0) else: quantities.append(q) low_price = int(min(low_prices)) center_price = int(sum(center_prices) / len(center_prices)) high_price = int(max(high_prices)) quantity = int(float(sum(quantities))) # 保存 insert_data(data, day, low_price, center_price, high_price, quantity) # 短期間にアクセスが集中しないようにクールタイムを設定 time.sleep(max(0.5 + random.normalvariate(0, 0.3), 0.1)) # DataFrameを作成 df = pd.DataFrame(data) return df # Webページを取得し解析する load_url = "https://www.football-lab.jp/kyot/match/" html = requests.get(load_url) soup = bs(html.content, "html.parser") df_train = pd.read_csv('df_train.csv') X = df_train.drop('audience', axis=1) y = df_train['audience'] linear_regression = LinearRegression() model = linear_regression.fit(X,y) d_today = datetime.date.today() d_tom = datetime.date.today() + datetime.timedelta(days = -1) d_y = datetime.date.today() + datetime.timedelta(days = -2) # 前日のあじデータ抽出 if __name__ == "__main__": start_date = d_y end_date = d_tom df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date) df_aji_pre['date'] = df_aji_pre['date'].astype(int) url23 = 'https://www.football-lab.jp/ka-f/match/' dfs23 = pd.read_html(url23) #シーズン毎に分類 res23 = pd.DataFrame([['S2023']]*len(dfs23[0])).join(dfs23) df = res23 df = df.rename(columns={'会場': 'stadium', 0: 'year', '開催日': 'date', '観客数': 'audience'}) df = df.query('stadium=="等々力"').reset_index() df = df.query('audience.notna()', engine='python').reset_index() df = df[['audience', 'year', 'date']] #seasonカラムから年を抽出 df["year"] = df["year"].apply(lambda x: str(x)[1:5]) #開催日から月と日を分割 df['month'] = df['date'].str.split(pat='.', expand=True)[0] df['day'] = df['date'].str.split(pat='.', expand=True)[1] #数値データを日付データに変換 df['date'] = pd.to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']}) #日付昇順に並び替える df = df.sort_values('date', ascending=True) df['date_ymd'] = pd.to_datetime(df['date']).dt.strftime('%Y%m%d') df['date_ym'] = pd.to_datetime(df['date']).dt.strftime('%Y%m') df["date_ymd"] = df["date_ymd"].astype(int) df['date_before'] = df['date_ymd'] - 1 df["date_before"] = df["date_before"] df = df[['audience', 'date_ymd', 'date_before']] df['last_audience'] = df['audience'].shift(1) df_pre = df.tail(1).reset_index() df_pre = df_pre.drop('index', axis=1) df_aji_ft_pre = pd.concat([df_pre, df_aji_pre], axis=1) df_aji_ft_pre = df_aji_ft_pre[['date_ymd', 'audience', 'low_price', 'center_price', 'high_price', 'quantity']] df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date_ymd', '観客数': 'audience'}) df_aji_ft_pre ['last_audience'] = df_aji_ft_pre ['last_audience'].astype(int) pred = linear_regression.predict(df_aji_ft_pre) df_aji_ft_pre['audience_pred'] = pred df_aji_ft_pre['date_ymd'] = df_aji_ft_pre['date_ymd'].astype(int) def outbreak(date): if date: fig = plt.figure() plt.plot(df_train['date_ymd'], df_train['audience'], label='original') plt.plot(df_aji_ft_pre['date_ymd'], df_aji_ft_pre['audience_pred'], '*', label='predict') plt.title(f"prediction of audince 「today prediction value : {pred}」") plt.ylabel("audience") plt.xlabel("Days") plt.legend() return fig with gr.Blocks() as demo: gr.Markdown( """ # 川崎フロンターレの観客動員数の予測 川崎フロンターレの等々力陸上競技場での試合の観客数を「あじ」の価格をもとに予測する。 ## 使用データ * 東京卸売市場日報 * Football Lab ## 予測ロジック 観客動員数は雨天か否かで左右されると考えられる。そこで雨天の可能性をあじの価格を利用し表した。 一般的に雨天の場合、低気圧の影響で海面が上昇し漁に出ることが難しくなる。 そのため漁獲量が減少し、あじの価格が上昇すると考えられる。 ## モデルについて モデル名:sklearn 特徴量:予測日前日のあじの高値、予測日前日のあじの中値、予測日前日のあじの安値、 予測日前日のあじの卸売数量、等々力競技場での川崎フロンターレの前回試合の観客数 ## 注意点 予測日前日のあじのデータがない場合はErrorとなります。 """ ) with gr.Row(): with gr.Column(): date_input = gr.Checkbox(label='Do you want to predict audiences?') prediction_btn = gr.Button(value="predict") with gr.Column(): prediction = gr.Plot(label = "時系列プロット") prediction_btn.click(outbreak, inputs=date_input, outputs=prediction) demo.launch()